Description: Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | brrici | |- ( F e. ( R RingIso S ) -> R ~=r S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i | |- ( F e. ( R RingIso S ) -> ( R RingIso S ) =/= (/) ) |
|
2 | brric | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
|
3 | 1 2 | sylibr | |- ( F e. ( R RingIso S ) -> R ~=r S ) |