Description: Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brrici | |- ( F e. ( R RingIso S ) -> R ~=r S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ne0i | |- ( F e. ( R RingIso S ) -> ( R RingIso S ) =/= (/) ) | |
| 2 | brric | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) | |
| 3 | 1 2 | sylibr | |- ( F e. ( R RingIso S ) -> R ~=r S ) |