Metamath Proof Explorer


Theorem brrici

Description: Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025)

Ref Expression
Assertion brrici
|- ( F e. ( R RingIso S ) -> R ~=r S )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( F e. ( R RingIso S ) -> ( R RingIso S ) =/= (/) )
2 brric
 |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) )
3 1 2 sylibr
 |-  ( F e. ( R RingIso S ) -> R ~=r S )