| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( B e. V -> B e. _V ) | 
						
							| 2 |  | relrpss |  |-  Rel [C.] | 
						
							| 3 | 2 | brrelex1i |  |-  ( A [C.] B -> A e. _V ) | 
						
							| 4 | 1 3 | anim12i |  |-  ( ( B e. V /\ A [C.] B ) -> ( B e. _V /\ A e. _V ) ) | 
						
							| 5 | 1 | adantr |  |-  ( ( B e. V /\ A C. B ) -> B e. _V ) | 
						
							| 6 |  | pssss |  |-  ( A C. B -> A C_ B ) | 
						
							| 7 |  | ssexg |  |-  ( ( A C_ B /\ B e. _V ) -> A e. _V ) | 
						
							| 8 | 6 1 7 | syl2anr |  |-  ( ( B e. V /\ A C. B ) -> A e. _V ) | 
						
							| 9 | 5 8 | jca |  |-  ( ( B e. V /\ A C. B ) -> ( B e. _V /\ A e. _V ) ) | 
						
							| 10 |  | psseq1 |  |-  ( x = A -> ( x C. y <-> A C. y ) ) | 
						
							| 11 |  | psseq2 |  |-  ( y = B -> ( A C. y <-> A C. B ) ) | 
						
							| 12 |  | df-rpss |  |-  [C.] = { <. x , y >. | x C. y } | 
						
							| 13 | 10 11 12 | brabg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A [C.] B <-> A C. B ) ) | 
						
							| 14 | 13 | ancoms |  |-  ( ( B e. _V /\ A e. _V ) -> ( A [C.] B <-> A C. B ) ) | 
						
							| 15 | 4 9 14 | pm5.21nd |  |-  ( B e. V -> ( A [C.] B <-> A C. B ) ) |