| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brsdom2.1 |
|- A e. _V |
| 2 |
|
brsdom2.2 |
|- B e. _V |
| 3 |
|
dfsdom2 |
|- ~< = ( ~<_ \ `' ~<_ ) |
| 4 |
3
|
eleq2i |
|- ( <. A , B >. e. ~< <-> <. A , B >. e. ( ~<_ \ `' ~<_ ) ) |
| 5 |
|
df-br |
|- ( A ~< B <-> <. A , B >. e. ~< ) |
| 6 |
|
df-br |
|- ( A ~<_ B <-> <. A , B >. e. ~<_ ) |
| 7 |
|
df-br |
|- ( B ~<_ A <-> <. B , A >. e. ~<_ ) |
| 8 |
1 2
|
opelcnv |
|- ( <. A , B >. e. `' ~<_ <-> <. B , A >. e. ~<_ ) |
| 9 |
7 8
|
bitr4i |
|- ( B ~<_ A <-> <. A , B >. e. `' ~<_ ) |
| 10 |
9
|
notbii |
|- ( -. B ~<_ A <-> -. <. A , B >. e. `' ~<_ ) |
| 11 |
6 10
|
anbi12i |
|- ( ( A ~<_ B /\ -. B ~<_ A ) <-> ( <. A , B >. e. ~<_ /\ -. <. A , B >. e. `' ~<_ ) ) |
| 12 |
|
eldif |
|- ( <. A , B >. e. ( ~<_ \ `' ~<_ ) <-> ( <. A , B >. e. ~<_ /\ -. <. A , B >. e. `' ~<_ ) ) |
| 13 |
11 12
|
bitr4i |
|- ( ( A ~<_ B /\ -. B ~<_ A ) <-> <. A , B >. e. ( ~<_ \ `' ~<_ ) ) |
| 14 |
4 5 13
|
3bitr4i |
|- ( A ~< B <-> ( A ~<_ B /\ -. B ~<_ A ) ) |