| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sscrel |
|- Rel C_cat |
| 2 |
1
|
brrelex12i |
|- ( H C_cat J -> ( H e. _V /\ J e. _V ) ) |
| 3 |
|
vex |
|- t e. _V |
| 4 |
3 3
|
xpex |
|- ( t X. t ) e. _V |
| 5 |
|
fnex |
|- ( ( J Fn ( t X. t ) /\ ( t X. t ) e. _V ) -> J e. _V ) |
| 6 |
4 5
|
mpan2 |
|- ( J Fn ( t X. t ) -> J e. _V ) |
| 7 |
|
elex |
|- ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H e. _V ) |
| 8 |
7
|
rexlimivw |
|- ( E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H e. _V ) |
| 9 |
6 8
|
anim12ci |
|- ( ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> ( H e. _V /\ J e. _V ) ) |
| 10 |
9
|
exlimiv |
|- ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> ( H e. _V /\ J e. _V ) ) |
| 11 |
|
simpr |
|- ( ( h = H /\ j = J ) -> j = J ) |
| 12 |
11
|
fneq1d |
|- ( ( h = H /\ j = J ) -> ( j Fn ( t X. t ) <-> J Fn ( t X. t ) ) ) |
| 13 |
|
simpl |
|- ( ( h = H /\ j = J ) -> h = H ) |
| 14 |
11
|
fveq1d |
|- ( ( h = H /\ j = J ) -> ( j ` x ) = ( J ` x ) ) |
| 15 |
14
|
pweqd |
|- ( ( h = H /\ j = J ) -> ~P ( j ` x ) = ~P ( J ` x ) ) |
| 16 |
15
|
ixpeq2dv |
|- ( ( h = H /\ j = J ) -> X_ x e. ( s X. s ) ~P ( j ` x ) = X_ x e. ( s X. s ) ~P ( J ` x ) ) |
| 17 |
13 16
|
eleq12d |
|- ( ( h = H /\ j = J ) -> ( h e. X_ x e. ( s X. s ) ~P ( j ` x ) <-> H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| 18 |
17
|
rexbidv |
|- ( ( h = H /\ j = J ) -> ( E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) <-> E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| 19 |
12 18
|
anbi12d |
|- ( ( h = H /\ j = J ) -> ( ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) <-> ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 20 |
19
|
exbidv |
|- ( ( h = H /\ j = J ) -> ( E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 21 |
|
df-ssc |
|- C_cat = { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) } |
| 22 |
20 21
|
brabga |
|- ( ( H e. _V /\ J e. _V ) -> ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 23 |
2 10 22
|
pm5.21nii |
|- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |