Metamath Proof Explorer


Theorem brsuccf

Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Hypotheses brsuccf.1
|- A e. _V
brsuccf.2
|- B e. _V
Assertion brsuccf
|- ( A Succ B <-> B = suc A )

Proof

Step Hyp Ref Expression
1 brsuccf.1
 |-  A e. _V
2 brsuccf.2
 |-  B e. _V
3 df-succf
 |-  Succ = ( Cup o. ( _I (x) Singleton ) )
4 3 breqi
 |-  ( A Succ B <-> A ( Cup o. ( _I (x) Singleton ) ) B )
5 1 2 brco
 |-  ( A ( Cup o. ( _I (x) Singleton ) ) B <-> E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) )
6 1 2 lemsuccf
 |-  ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A )
7 4 5 6 3bitri
 |-  ( A Succ B <-> B = suc A )