Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsuccf.1 | |- A e. _V |
|
| brsuccf.2 | |- B e. _V |
||
| Assertion | brsuccf | |- ( A Succ B <-> B = suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsuccf.1 | |- A e. _V |
|
| 2 | brsuccf.2 | |- B e. _V |
|
| 3 | df-succf | |- Succ = ( Cup o. ( _I (x) Singleton ) ) |
|
| 4 | 3 | breqi | |- ( A Succ B <-> A ( Cup o. ( _I (x) Singleton ) ) B ) |
| 5 | 1 2 | brco | |- ( A ( Cup o. ( _I (x) Singleton ) ) B <-> E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) ) |
| 6 | 1 2 | lemsuccf | |- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A ) |
| 7 | 4 5 6 | 3bitri | |- ( A Succ B <-> B = suc A ) |