Metamath Proof Explorer


Theorem brsymdif

Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion brsymdif
|- ( A ( R /_\ S ) B <-> -. ( A R B <-> A S B ) )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( A ( R /_\ S ) B <-> <. A , B >. e. ( R /_\ S ) )
2 elsymdif
 |-  ( <. A , B >. e. ( R /_\ S ) <-> -. ( <. A , B >. e. R <-> <. A , B >. e. S ) )
3 df-br
 |-  ( A R B <-> <. A , B >. e. R )
4 df-br
 |-  ( A S B <-> <. A , B >. e. S )
5 3 4 bibi12i
 |-  ( ( A R B <-> A S B ) <-> ( <. A , B >. e. R <-> <. A , B >. e. S ) )
6 2 5 xchbinxr
 |-  ( <. A , B >. e. ( R /_\ S ) <-> -. ( A R B <-> A S B ) )
7 1 6 bitri
 |-  ( A ( R /_\ S ) B <-> -. ( A R B <-> A S B ) )