Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | brsymdif | |- ( A ( R /_\ S ) B <-> -. ( A R B <-> A S B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br | |- ( A ( R /_\ S ) B <-> <. A , B >. e. ( R /_\ S ) ) |
|
2 | elsymdif | |- ( <. A , B >. e. ( R /_\ S ) <-> -. ( <. A , B >. e. R <-> <. A , B >. e. S ) ) |
|
3 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
4 | df-br | |- ( A S B <-> <. A , B >. e. S ) |
|
5 | 3 4 | bibi12i | |- ( ( A R B <-> A S B ) <-> ( <. A , B >. e. R <-> <. A , B >. e. S ) ) |
6 | 2 5 | xchbinxr | |- ( <. A , B >. e. ( R /_\ S ) <-> -. ( A R B <-> A S B ) ) |
7 | 1 6 | bitri | |- ( A ( R /_\ S ) B <-> -. ( A R B <-> A S B ) ) |