| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relttrcl |  |-  Rel t++ R | 
						
							| 2 | 1 | brrelex12i |  |-  ( A t++ R B -> ( A e. _V /\ B e. _V ) ) | 
						
							| 3 |  | fvex |  |-  ( f ` (/) ) e. _V | 
						
							| 4 |  | eleq1 |  |-  ( ( f ` (/) ) = A -> ( ( f ` (/) ) e. _V <-> A e. _V ) ) | 
						
							| 5 | 3 4 | mpbii |  |-  ( ( f ` (/) ) = A -> A e. _V ) | 
						
							| 6 |  | fvex |  |-  ( f ` n ) e. _V | 
						
							| 7 |  | eleq1 |  |-  ( ( f ` n ) = B -> ( ( f ` n ) e. _V <-> B e. _V ) ) | 
						
							| 8 | 6 7 | mpbii |  |-  ( ( f ` n ) = B -> B e. _V ) | 
						
							| 9 | 5 8 | anim12i |  |-  ( ( ( f ` (/) ) = A /\ ( f ` n ) = B ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 10 | 9 | 3ad2ant2 |  |-  ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 11 | 10 | exlimiv |  |-  ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 12 | 11 | rexlimivw |  |-  ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 13 |  | eqeq2 |  |-  ( x = A -> ( ( f ` (/) ) = x <-> ( f ` (/) ) = A ) ) | 
						
							| 14 | 13 | anbi1d |  |-  ( x = A -> ( ( ( f ` (/) ) = x /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = y ) ) ) | 
						
							| 15 | 14 | 3anbi2d |  |-  ( x = A -> ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 16 | 15 | exbidv |  |-  ( x = A -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 17 | 16 | rexbidv |  |-  ( x = A -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 18 |  | eqeq2 |  |-  ( y = B -> ( ( f ` n ) = y <-> ( f ` n ) = B ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( y = B -> ( ( ( f ` (/) ) = A /\ ( f ` n ) = y ) <-> ( ( f ` (/) ) = A /\ ( f ` n ) = B ) ) ) | 
						
							| 20 | 19 | 3anbi2d |  |-  ( y = B -> ( ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 21 | 20 | exbidv |  |-  ( y = B -> ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 22 | 21 | rexbidv |  |-  ( y = B -> ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 23 |  | df-ttrcl |  |-  t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } | 
						
							| 24 | 17 22 23 | brabg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 25 | 2 12 24 | pm5.21nii |  |-  ( A t++ R B <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = A /\ ( f ` n ) = B ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |