| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brttrcl |  |-  ( A t++ R B <-> E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) | 
						
							| 2 |  | df-1o |  |-  1o = suc (/) | 
						
							| 3 | 2 | difeq2i |  |-  ( _om \ 1o ) = ( _om \ suc (/) ) | 
						
							| 4 | 3 | eleq2i |  |-  ( m e. ( _om \ 1o ) <-> m e. ( _om \ suc (/) ) ) | 
						
							| 5 |  | peano1 |  |-  (/) e. _om | 
						
							| 6 |  | eldifsucnn |  |-  ( (/) e. _om -> ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( m e. ( _om \ suc (/) ) <-> E. n e. ( _om \ (/) ) m = suc n ) | 
						
							| 8 |  | dif0 |  |-  ( _om \ (/) ) = _om | 
						
							| 9 | 8 | rexeqi |  |-  ( E. n e. ( _om \ (/) ) m = suc n <-> E. n e. _om m = suc n ) | 
						
							| 10 | 4 7 9 | 3bitri |  |-  ( m e. ( _om \ 1o ) <-> E. n e. _om m = suc n ) | 
						
							| 11 | 10 | anbi1i |  |-  ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 12 |  | r19.41v |  |-  ( E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> ( E. n e. _om m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 13 | 11 12 | bitr4i |  |-  ( ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 14 | 13 | exbii |  |-  ( E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 15 |  | df-rex |  |-  ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. m ( m e. ( _om \ 1o ) /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 16 |  | rexcom4 |  |-  ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. m E. n e. _om ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 17 | 14 15 16 | 3bitr4i |  |-  ( E. m e. ( _om \ 1o ) E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 18 |  | vex |  |-  n e. _V | 
						
							| 19 | 18 | sucex |  |-  suc n e. _V | 
						
							| 20 |  | suceq |  |-  ( m = suc n -> suc m = suc suc n ) | 
						
							| 21 | 20 | fneq2d |  |-  ( m = suc n -> ( f Fn suc m <-> f Fn suc suc n ) ) | 
						
							| 22 |  | fveqeq2 |  |-  ( m = suc n -> ( ( f ` m ) = B <-> ( f ` suc n ) = B ) ) | 
						
							| 23 | 22 | anbi2d |  |-  ( m = suc n -> ( ( ( f ` (/) ) = A /\ ( f ` m ) = B ) <-> ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) ) ) | 
						
							| 24 |  | raleq |  |-  ( m = suc n -> ( A. a e. m ( f ` a ) R ( f ` suc a ) <-> A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) | 
						
							| 25 | 21 23 24 | 3anbi123d |  |-  ( m = suc n -> ( ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 26 | 25 | exbidv |  |-  ( m = suc n -> ( E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) ) | 
						
							| 27 | 19 26 | ceqsexv |  |-  ( E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) | 
						
							| 28 | 27 | rexbii |  |-  ( E. n e. _om E. m ( m = suc n /\ E. f ( f Fn suc m /\ ( ( f ` (/) ) = A /\ ( f ` m ) = B ) /\ A. a e. m ( f ` a ) R ( f ` suc a ) ) ) <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) | 
						
							| 29 | 1 17 28 | 3bitri |  |-  ( A t++ R B <-> E. n e. _om E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = A /\ ( f ` suc n ) = B ) /\ A. a e. suc n ( f ` a ) R ( f ` suc a ) ) ) |