Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd2.1 | |- A e. _V |
|
| brtxpsd2.2 | |- B e. _V |
||
| brtxpsd2.3 | |- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
||
| brtxpsd2.4 | |- A C B |
||
| brtxpsd3.5 | |- ( x e. X <-> x S A ) |
||
| Assertion | brtxpsd3 | |- ( A R B <-> B = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd2.1 | |- A e. _V |
|
| 2 | brtxpsd2.2 | |- B e. _V |
|
| 3 | brtxpsd2.3 | |- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
|
| 4 | brtxpsd2.4 | |- A C B |
|
| 5 | brtxpsd3.5 | |- ( x e. X <-> x S A ) |
|
| 6 | 5 | bibi2i | |- ( ( x e. B <-> x e. X ) <-> ( x e. B <-> x S A ) ) |
| 7 | 6 | albii | |- ( A. x ( x e. B <-> x e. X ) <-> A. x ( x e. B <-> x S A ) ) |
| 8 | dfcleq | |- ( B = X <-> A. x ( x e. B <-> x e. X ) ) |
|
| 9 | 1 2 3 4 | brtxpsd2 | |- ( A R B <-> A. x ( x e. B <-> x S A ) ) |
| 10 | 7 8 9 | 3bitr4ri | |- ( A R B <-> B = X ) |