Metamath Proof Explorer


Theorem brun

Description: The union of two binary relations. (Contributed by NM, 21-Dec-2008)

Ref Expression
Assertion brun
|- ( A ( R u. S ) B <-> ( A R B \/ A S B ) )

Proof

Step Hyp Ref Expression
1 elun
 |-  ( <. A , B >. e. ( R u. S ) <-> ( <. A , B >. e. R \/ <. A , B >. e. S ) )
2 df-br
 |-  ( A ( R u. S ) B <-> <. A , B >. e. ( R u. S ) )
3 df-br
 |-  ( A R B <-> <. A , B >. e. R )
4 df-br
 |-  ( A S B <-> <. A , B >. e. S )
5 3 4 orbi12i
 |-  ( ( A R B \/ A S B ) <-> ( <. A , B >. e. R \/ <. A , B >. e. S ) )
6 1 2 5 3bitr4i
 |-  ( A ( R u. S ) B <-> ( A R B \/ A S B ) )