Metamath Proof Explorer


Theorem brwdom3i

Description: Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015)

Ref Expression
Assertion brwdom3i
|- ( X ~<_* Y -> E. f A. x e. X E. y e. Y x = ( f ` y ) )

Proof

Step Hyp Ref Expression
1 relwdom
 |-  Rel ~<_*
2 1 brrelex1i
 |-  ( X ~<_* Y -> X e. _V )
3 1 brrelex2i
 |-  ( X ~<_* Y -> Y e. _V )
4 brwdom3
 |-  ( ( X e. _V /\ Y e. _V ) -> ( X ~<_* Y <-> E. f A. x e. X E. y e. Y x = ( f ` y ) ) )
5 2 3 4 syl2anc
 |-  ( X ~<_* Y -> ( X ~<_* Y <-> E. f A. x e. X E. y e. Y x = ( f ` y ) ) )
6 5 ibi
 |-  ( X ~<_* Y -> E. f A. x e. X E. y e. Y x = ( f ` y ) )