Step |
Hyp |
Ref |
Expression |
1 |
|
brwitnlem.r |
|- R = ( `' O " ( _V \ 1o ) ) |
2 |
|
brwitnlem.o |
|- O Fn X |
3 |
|
fvex |
|- ( O ` <. A , B >. ) e. _V |
4 |
|
dif1o |
|- ( ( O ` <. A , B >. ) e. ( _V \ 1o ) <-> ( ( O ` <. A , B >. ) e. _V /\ ( O ` <. A , B >. ) =/= (/) ) ) |
5 |
3 4
|
mpbiran |
|- ( ( O ` <. A , B >. ) e. ( _V \ 1o ) <-> ( O ` <. A , B >. ) =/= (/) ) |
6 |
5
|
anbi2i |
|- ( ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) =/= (/) ) ) |
7 |
|
elpreima |
|- ( O Fn X -> ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) ) ) |
8 |
2 7
|
ax-mp |
|- ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) e. ( _V \ 1o ) ) ) |
9 |
|
ndmfv |
|- ( -. <. A , B >. e. dom O -> ( O ` <. A , B >. ) = (/) ) |
10 |
9
|
necon1ai |
|- ( ( O ` <. A , B >. ) =/= (/) -> <. A , B >. e. dom O ) |
11 |
2
|
fndmi |
|- dom O = X |
12 |
10 11
|
eleqtrdi |
|- ( ( O ` <. A , B >. ) =/= (/) -> <. A , B >. e. X ) |
13 |
12
|
pm4.71ri |
|- ( ( O ` <. A , B >. ) =/= (/) <-> ( <. A , B >. e. X /\ ( O ` <. A , B >. ) =/= (/) ) ) |
14 |
6 8 13
|
3bitr4i |
|- ( <. A , B >. e. ( `' O " ( _V \ 1o ) ) <-> ( O ` <. A , B >. ) =/= (/) ) |
15 |
1
|
breqi |
|- ( A R B <-> A ( `' O " ( _V \ 1o ) ) B ) |
16 |
|
df-br |
|- ( A ( `' O " ( _V \ 1o ) ) B <-> <. A , B >. e. ( `' O " ( _V \ 1o ) ) ) |
17 |
15 16
|
bitri |
|- ( A R B <-> <. A , B >. e. ( `' O " ( _V \ 1o ) ) ) |
18 |
|
df-ov |
|- ( A O B ) = ( O ` <. A , B >. ) |
19 |
18
|
neeq1i |
|- ( ( A O B ) =/= (/) <-> ( O ` <. A , B >. ) =/= (/) ) |
20 |
14 17 19
|
3bitr4i |
|- ( A R B <-> ( A O B ) =/= (/) ) |