| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrnss3v | 
							 |-  ( R |X. S ) C_ ( _V X. ( _V X. _V ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							brel | 
							 |-  ( A ( R |X. S ) B -> ( A e. _V /\ B e. ( _V X. _V ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simprd | 
							 |-  ( A ( R |X. S ) B -> B e. ( _V X. _V ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elvv | 
							 |-  ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylib | 
							 |-  ( A ( R |X. S ) B -> E. x E. y B = <. x , y >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm4.71ri | 
							 |-  ( A ( R |X. S ) B <-> ( E. x E. y B = <. x , y >. /\ A ( R |X. S ) B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							19.41vv | 
							 |-  ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> ( E. x E. y B = <. x , y >. /\ A ( R |X. S ) B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							 |-  ( B = <. x , y >. -> ( A ( R |X. S ) B <-> A ( R |X. S ) <. x , y >. ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							pm5.32i | 
							 |-  ( ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							2exbii | 
							 |-  ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) B ) <-> E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) )  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							3bitr2i | 
							 |-  ( A ( R |X. S ) B <-> E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) )  | 
						
						
							| 12 | 
							
								
							 | 
							brxrn | 
							 |-  ( ( A e. V /\ x e. _V /\ y e. _V ) -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							el3v23 | 
							 |-  ( A e. V -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							anbi2d | 
							 |-  ( A e. V -> ( ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							3anass | 
							 |-  ( ( B = <. x , y >. /\ A R x /\ A S y ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							bitr4di | 
							 |-  ( A e. V -> ( ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> ( B = <. x , y >. /\ A R x /\ A S y ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							2exbidv | 
							 |-  ( A e. V -> ( E. x E. y ( B = <. x , y >. /\ A ( R |X. S ) <. x , y >. ) <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							bitrid | 
							 |-  ( A e. V -> ( A ( R |X. S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) )  |