Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
8 |
|
hltr.d |
|- ( ph -> D e. P ) |
9 |
|
btwnhl.1 |
|- ( ph -> A ( K ` D ) B ) |
10 |
|
btwnhl.3 |
|- ( ph -> D e. ( A I C ) ) |
11 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
12 |
7
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> G e. TarskiG ) |
13 |
6
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> C e. P ) |
14 |
8
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. P ) |
15 |
5
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> B e. P ) |
16 |
4
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> A e. P ) |
17 |
1 2 3 4 5 8 7
|
ishlg |
|- ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) ) |
18 |
9 17
|
mpbid |
|- ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) |
19 |
18
|
simp1d |
|- ( ph -> A =/= D ) |
20 |
19
|
necomd |
|- ( ph -> D =/= A ) |
21 |
20
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D =/= A ) |
22 |
10
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( A I C ) ) |
23 |
1 11 2 12 16 14 13 22
|
tgbtwncom |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I A ) ) |
24 |
|
simpr |
|- ( ( ph /\ A e. ( D I B ) ) -> A e. ( D I B ) ) |
25 |
1 11 2 12 13 14 16 15 21 23 24
|
tgbtwnouttr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I B ) ) |
26 |
1 11 2 12 13 14 15 25
|
tgbtwncom |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( B I C ) ) |
27 |
7
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> G e. TarskiG ) |
28 |
4
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> A e. P ) |
29 |
5
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. P ) |
30 |
8
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. P ) |
31 |
6
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> C e. P ) |
32 |
|
simpr |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. ( D I A ) ) |
33 |
1 11 2 27 30 29 28 32
|
tgbtwncom |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. ( A I D ) ) |
34 |
10
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. ( A I C ) ) |
35 |
1 11 2 27 28 29 30 31 33 34
|
tgbtwnexch3 |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. ( B I C ) ) |
36 |
18
|
simp3d |
|- ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) ) |
37 |
26 35 36
|
mpjaodan |
|- ( ph -> D e. ( B I C ) ) |