Metamath Proof Explorer


Theorem btwnhl

Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses ishlg.p
|- P = ( Base ` G )
ishlg.i
|- I = ( Itv ` G )
ishlg.k
|- K = ( hlG ` G )
ishlg.a
|- ( ph -> A e. P )
ishlg.b
|- ( ph -> B e. P )
ishlg.c
|- ( ph -> C e. P )
hlln.1
|- ( ph -> G e. TarskiG )
hltr.d
|- ( ph -> D e. P )
btwnhl.1
|- ( ph -> A ( K ` D ) B )
btwnhl.3
|- ( ph -> D e. ( A I C ) )
Assertion btwnhl
|- ( ph -> D e. ( B I C ) )

Proof

Step Hyp Ref Expression
1 ishlg.p
 |-  P = ( Base ` G )
2 ishlg.i
 |-  I = ( Itv ` G )
3 ishlg.k
 |-  K = ( hlG ` G )
4 ishlg.a
 |-  ( ph -> A e. P )
5 ishlg.b
 |-  ( ph -> B e. P )
6 ishlg.c
 |-  ( ph -> C e. P )
7 hlln.1
 |-  ( ph -> G e. TarskiG )
8 hltr.d
 |-  ( ph -> D e. P )
9 btwnhl.1
 |-  ( ph -> A ( K ` D ) B )
10 btwnhl.3
 |-  ( ph -> D e. ( A I C ) )
11 eqid
 |-  ( dist ` G ) = ( dist ` G )
12 7 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> G e. TarskiG )
13 6 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> C e. P )
14 8 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> D e. P )
15 5 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> B e. P )
16 4 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> A e. P )
17 1 2 3 4 5 8 7 ishlg
 |-  ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) )
18 9 17 mpbid
 |-  ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) )
19 18 simp1d
 |-  ( ph -> A =/= D )
20 19 necomd
 |-  ( ph -> D =/= A )
21 20 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> D =/= A )
22 10 adantr
 |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( A I C ) )
23 1 11 2 12 16 14 13 22 tgbtwncom
 |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I A ) )
24 simpr
 |-  ( ( ph /\ A e. ( D I B ) ) -> A e. ( D I B ) )
25 1 11 2 12 13 14 16 15 21 23 24 tgbtwnouttr
 |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I B ) )
26 1 11 2 12 13 14 15 25 tgbtwncom
 |-  ( ( ph /\ A e. ( D I B ) ) -> D e. ( B I C ) )
27 7 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> G e. TarskiG )
28 4 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> A e. P )
29 5 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> B e. P )
30 8 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> D e. P )
31 6 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> C e. P )
32 simpr
 |-  ( ( ph /\ B e. ( D I A ) ) -> B e. ( D I A ) )
33 1 11 2 27 30 29 28 32 tgbtwncom
 |-  ( ( ph /\ B e. ( D I A ) ) -> B e. ( A I D ) )
34 10 adantr
 |-  ( ( ph /\ B e. ( D I A ) ) -> D e. ( A I C ) )
35 1 11 2 27 28 29 30 31 33 34 tgbtwnexch3
 |-  ( ( ph /\ B e. ( D I A ) ) -> D e. ( B I C ) )
36 18 simp3d
 |-  ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) )
37 26 35 36 mpjaodan
 |-  ( ph -> D e. ( B I C ) )