| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
hltr.d |
|- ( ph -> D e. P ) |
| 9 |
|
btwnhl.1 |
|- ( ph -> A ( K ` D ) B ) |
| 10 |
|
btwnhl.3 |
|- ( ph -> D e. ( A I C ) ) |
| 11 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> G e. TarskiG ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> C e. P ) |
| 14 |
8
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. P ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> B e. P ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> A e. P ) |
| 17 |
1 2 3 4 5 8 7
|
ishlg |
|- ( ph -> ( A ( K ` D ) B <-> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) ) |
| 18 |
9 17
|
mpbid |
|- ( ph -> ( A =/= D /\ B =/= D /\ ( A e. ( D I B ) \/ B e. ( D I A ) ) ) ) |
| 19 |
18
|
simp1d |
|- ( ph -> A =/= D ) |
| 20 |
19
|
necomd |
|- ( ph -> D =/= A ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D =/= A ) |
| 22 |
10
|
adantr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( A I C ) ) |
| 23 |
1 11 2 12 16 14 13 22
|
tgbtwncom |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I A ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ A e. ( D I B ) ) -> A e. ( D I B ) ) |
| 25 |
1 11 2 12 13 14 16 15 21 23 24
|
tgbtwnouttr |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( C I B ) ) |
| 26 |
1 11 2 12 13 14 15 25
|
tgbtwncom |
|- ( ( ph /\ A e. ( D I B ) ) -> D e. ( B I C ) ) |
| 27 |
7
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> G e. TarskiG ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> A e. P ) |
| 29 |
5
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. P ) |
| 30 |
8
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. P ) |
| 31 |
6
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> C e. P ) |
| 32 |
|
simpr |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. ( D I A ) ) |
| 33 |
1 11 2 27 30 29 28 32
|
tgbtwncom |
|- ( ( ph /\ B e. ( D I A ) ) -> B e. ( A I D ) ) |
| 34 |
10
|
adantr |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. ( A I C ) ) |
| 35 |
1 11 2 27 28 29 30 31 33 34
|
tgbtwnexch3 |
|- ( ( ph /\ B e. ( D I A ) ) -> D e. ( B I C ) ) |
| 36 |
18
|
simp3d |
|- ( ph -> ( A e. ( D I B ) \/ B e. ( D I A ) ) ) |
| 37 |
26 35 36
|
mpjaodan |
|- ( ph -> D e. ( B I C ) ) |