Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishlg.p | |- P = ( Base ` G ) |
|
ishlg.i | |- I = ( Itv ` G ) |
||
ishlg.k | |- K = ( hlG ` G ) |
||
ishlg.a | |- ( ph -> A e. P ) |
||
ishlg.b | |- ( ph -> B e. P ) |
||
ishlg.c | |- ( ph -> C e. P ) |
||
hlln.1 | |- ( ph -> G e. TarskiG ) |
||
hltr.d | |- ( ph -> D e. P ) |
||
btwnhl1.1 | |- ( ph -> C e. ( A I B ) ) |
||
btwnhl1.2 | |- ( ph -> A =/= B ) |
||
btwnhl1.3 | |- ( ph -> C =/= A ) |
||
Assertion | btwnhl1 | |- ( ph -> C ( K ` A ) B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | |- P = ( Base ` G ) |
|
2 | ishlg.i | |- I = ( Itv ` G ) |
|
3 | ishlg.k | |- K = ( hlG ` G ) |
|
4 | ishlg.a | |- ( ph -> A e. P ) |
|
5 | ishlg.b | |- ( ph -> B e. P ) |
|
6 | ishlg.c | |- ( ph -> C e. P ) |
|
7 | hlln.1 | |- ( ph -> G e. TarskiG ) |
|
8 | hltr.d | |- ( ph -> D e. P ) |
|
9 | btwnhl1.1 | |- ( ph -> C e. ( A I B ) ) |
|
10 | btwnhl1.2 | |- ( ph -> A =/= B ) |
|
11 | btwnhl1.3 | |- ( ph -> C =/= A ) |
|
12 | 10 | necomd | |- ( ph -> B =/= A ) |
13 | 9 | orcd | |- ( ph -> ( C e. ( A I B ) \/ B e. ( A I C ) ) ) |
14 | 1 2 3 6 5 4 7 | ishlg | |- ( ph -> ( C ( K ` A ) B <-> ( C =/= A /\ B =/= A /\ ( C e. ( A I B ) \/ B e. ( A I C ) ) ) ) ) |
15 | 11 12 13 14 | mpbir3and | |- ( ph -> C ( K ` A ) B ) |