Metamath Proof Explorer


Theorem btwnhl1

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p
|- P = ( Base ` G )
ishlg.i
|- I = ( Itv ` G )
ishlg.k
|- K = ( hlG ` G )
ishlg.a
|- ( ph -> A e. P )
ishlg.b
|- ( ph -> B e. P )
ishlg.c
|- ( ph -> C e. P )
hlln.1
|- ( ph -> G e. TarskiG )
hltr.d
|- ( ph -> D e. P )
btwnhl1.1
|- ( ph -> C e. ( A I B ) )
btwnhl1.2
|- ( ph -> A =/= B )
btwnhl1.3
|- ( ph -> C =/= A )
Assertion btwnhl1
|- ( ph -> C ( K ` A ) B )

Proof

Step Hyp Ref Expression
1 ishlg.p
 |-  P = ( Base ` G )
2 ishlg.i
 |-  I = ( Itv ` G )
3 ishlg.k
 |-  K = ( hlG ` G )
4 ishlg.a
 |-  ( ph -> A e. P )
5 ishlg.b
 |-  ( ph -> B e. P )
6 ishlg.c
 |-  ( ph -> C e. P )
7 hlln.1
 |-  ( ph -> G e. TarskiG )
8 hltr.d
 |-  ( ph -> D e. P )
9 btwnhl1.1
 |-  ( ph -> C e. ( A I B ) )
10 btwnhl1.2
 |-  ( ph -> A =/= B )
11 btwnhl1.3
 |-  ( ph -> C =/= A )
12 10 necomd
 |-  ( ph -> B =/= A )
13 9 orcd
 |-  ( ph -> ( C e. ( A I B ) \/ B e. ( A I C ) ) )
14 1 2 3 6 5 4 7 ishlg
 |-  ( ph -> ( C ( K ` A ) B <-> ( C =/= A /\ B =/= A /\ ( C e. ( A I B ) \/ B e. ( A I C ) ) ) ) )
15 11 12 13 14 mpbir3and
 |-  ( ph -> C ( K ` A ) B )