Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | btwnlng1.p | |- P = ( Base ` G ) |
|
btwnlng1.i | |- I = ( Itv ` G ) |
||
btwnlng1.l | |- L = ( LineG ` G ) |
||
btwnlng1.g | |- ( ph -> G e. TarskiG ) |
||
btwnlng1.x | |- ( ph -> X e. P ) |
||
btwnlng1.y | |- ( ph -> Y e. P ) |
||
btwnlng1.z | |- ( ph -> Z e. P ) |
||
btwnlng1.d | |- ( ph -> X =/= Y ) |
||
btwnlng1.1 | |- ( ph -> Z e. ( X I Y ) ) |
||
Assertion | btwnlng1 | |- ( ph -> Z e. ( X L Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnlng1.p | |- P = ( Base ` G ) |
|
2 | btwnlng1.i | |- I = ( Itv ` G ) |
|
3 | btwnlng1.l | |- L = ( LineG ` G ) |
|
4 | btwnlng1.g | |- ( ph -> G e. TarskiG ) |
|
5 | btwnlng1.x | |- ( ph -> X e. P ) |
|
6 | btwnlng1.y | |- ( ph -> Y e. P ) |
|
7 | btwnlng1.z | |- ( ph -> Z e. P ) |
|
8 | btwnlng1.d | |- ( ph -> X =/= Y ) |
|
9 | btwnlng1.1 | |- ( ph -> Z e. ( X I Y ) ) |
|
10 | 9 | 3mix1d | |- ( ph -> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) |
11 | 1 3 2 4 5 6 8 7 | tgellng | |- ( ph -> ( Z e. ( X L Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |
12 | 10 11 | mpbird | |- ( ph -> Z e. ( X L Y ) ) |