Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
2 |
|
arch |
|- ( -u A e. RR -> E. z e. NN -u A < z ) |
3 |
1 2
|
syl |
|- ( A e. RR -> E. z e. NN -u A < z ) |
4 |
|
nnre |
|- ( z e. NN -> z e. RR ) |
5 |
|
ltnegcon1 |
|- ( ( A e. RR /\ z e. RR ) -> ( -u A < z <-> -u z < A ) ) |
6 |
5
|
ex |
|- ( A e. RR -> ( z e. RR -> ( -u A < z <-> -u z < A ) ) ) |
7 |
4 6
|
syl5 |
|- ( A e. RR -> ( z e. NN -> ( -u A < z <-> -u z < A ) ) ) |
8 |
7
|
pm5.32d |
|- ( A e. RR -> ( ( z e. NN /\ -u A < z ) <-> ( z e. NN /\ -u z < A ) ) ) |
9 |
|
nnnegz |
|- ( z e. NN -> -u z e. ZZ ) |
10 |
|
breq1 |
|- ( x = -u z -> ( x < A <-> -u z < A ) ) |
11 |
10
|
rspcev |
|- ( ( -u z e. ZZ /\ -u z < A ) -> E. x e. ZZ x < A ) |
12 |
9 11
|
sylan |
|- ( ( z e. NN /\ -u z < A ) -> E. x e. ZZ x < A ) |
13 |
8 12
|
syl6bi |
|- ( A e. RR -> ( ( z e. NN /\ -u A < z ) -> E. x e. ZZ x < A ) ) |
14 |
13
|
expd |
|- ( A e. RR -> ( z e. NN -> ( -u A < z -> E. x e. ZZ x < A ) ) ) |
15 |
14
|
rexlimdv |
|- ( A e. RR -> ( E. z e. NN -u A < z -> E. x e. ZZ x < A ) ) |
16 |
3 15
|
mpd |
|- ( A e. RR -> E. x e. ZZ x < A ) |
17 |
|
arch |
|- ( A e. RR -> E. y e. NN A < y ) |
18 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
19 |
18
|
anim1i |
|- ( ( y e. NN /\ A < y ) -> ( y e. ZZ /\ A < y ) ) |
20 |
19
|
reximi2 |
|- ( E. y e. NN A < y -> E. y e. ZZ A < y ) |
21 |
17 20
|
syl |
|- ( A e. RR -> E. y e. ZZ A < y ) |
22 |
16 21
|
jca |
|- ( A e. RR -> ( E. x e. ZZ x < A /\ E. y e. ZZ A < y ) ) |