Metamath Proof Explorer


Theorem c0ex

Description: Zero is a set. (Contributed by David A. Wheeler, 7-Jul-2016)

Ref Expression
Assertion c0ex
|- 0 e. _V

Proof

Step Hyp Ref Expression
1 0cn
 |-  0 e. CC
2 1 elexi
 |-  0 e. _V