| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0mhm.b |
|- B = ( Base ` S ) |
| 2 |
|
c0mhm.0 |
|- .0. = ( 0g ` T ) |
| 3 |
|
c0mhm.h |
|- H = ( x e. B |-> .0. ) |
| 4 |
|
grpmnd |
|- ( S e. Grp -> S e. Mnd ) |
| 5 |
|
grpmnd |
|- ( T e. Grp -> T e. Mnd ) |
| 6 |
4 5
|
anim12i |
|- ( ( S e. Grp /\ T e. Grp ) -> ( S e. Mnd /\ T e. Mnd ) ) |
| 7 |
1 2 3
|
c0mhm |
|- ( ( S e. Mnd /\ T e. Mnd ) -> H e. ( S MndHom T ) ) |
| 8 |
6 7
|
syl |
|- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S MndHom T ) ) |
| 9 |
|
ghmmhmb |
|- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
| 10 |
9
|
eleq2d |
|- ( ( S e. Grp /\ T e. Grp ) -> ( H e. ( S GrpHom T ) <-> H e. ( S MndHom T ) ) ) |
| 11 |
8 10
|
mpbird |
|- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |