| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0mhm.b |
|- B = ( Base ` S ) |
| 2 |
|
c0mhm.0 |
|- .0. = ( 0g ` T ) |
| 3 |
|
c0mhm.h |
|- H = ( x e. B |-> .0. ) |
| 4 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 5 |
4 2
|
mndidcl |
|- ( T e. Mnd -> .0. e. ( Base ` T ) ) |
| 6 |
5
|
adantl |
|- ( ( S e. Mnd /\ T e. Mnd ) -> .0. e. ( Base ` T ) ) |
| 7 |
6
|
adantr |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ x e. B ) -> .0. e. ( Base ` T ) ) |
| 8 |
7 3
|
fmptd |
|- ( ( S e. Mnd /\ T e. Mnd ) -> H : B --> ( Base ` T ) ) |
| 9 |
5
|
ancli |
|- ( T e. Mnd -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 10 |
9
|
adantl |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( T e. Mnd /\ .0. e. ( Base ` T ) ) ) |
| 11 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
| 12 |
4 11 2
|
mndlid |
|- ( ( T e. Mnd /\ .0. e. ( Base ` T ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 13 |
10 12
|
syl |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 14 |
13
|
adantr |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( .0. ( +g ` T ) .0. ) = .0. ) |
| 15 |
3
|
a1i |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> H = ( x e. B |-> .0. ) ) |
| 16 |
|
eqidd |
|- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = a ) -> .0. = .0. ) |
| 17 |
|
simprl |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
| 18 |
6
|
adantr |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> .0. e. ( Base ` T ) ) |
| 19 |
15 16 17 18
|
fvmptd |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` a ) = .0. ) |
| 20 |
|
eqidd |
|- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = b ) -> .0. = .0. ) |
| 21 |
|
simprr |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
| 22 |
15 20 21 18
|
fvmptd |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` b ) = .0. ) |
| 23 |
19 22
|
oveq12d |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( ( H ` a ) ( +g ` T ) ( H ` b ) ) = ( .0. ( +g ` T ) .0. ) ) |
| 24 |
|
eqidd |
|- ( ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) /\ x = ( a ( +g ` S ) b ) ) -> .0. = .0. ) |
| 25 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 26 |
1 25
|
mndcl |
|- ( ( S e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` S ) b ) e. B ) |
| 27 |
26
|
3expb |
|- ( ( S e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 28 |
27
|
adantlr |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` S ) b ) e. B ) |
| 29 |
15 24 28 18
|
fvmptd |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = .0. ) |
| 30 |
14 23 29
|
3eqtr4rd |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ ( a e. B /\ b e. B ) ) -> ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 31 |
30
|
ralrimivva |
|- ( ( S e. Mnd /\ T e. Mnd ) -> A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) ) |
| 32 |
3
|
a1i |
|- ( ( S e. Mnd /\ T e. Mnd ) -> H = ( x e. B |-> .0. ) ) |
| 33 |
|
eqidd |
|- ( ( ( S e. Mnd /\ T e. Mnd ) /\ x = ( 0g ` S ) ) -> .0. = .0. ) |
| 34 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 35 |
1 34
|
mndidcl |
|- ( S e. Mnd -> ( 0g ` S ) e. B ) |
| 36 |
35
|
adantr |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( 0g ` S ) e. B ) |
| 37 |
32 33 36 6
|
fvmptd |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( H ` ( 0g ` S ) ) = .0. ) |
| 38 |
8 31 37
|
3jca |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) |
| 39 |
38
|
ancli |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( ( S e. Mnd /\ T e. Mnd ) /\ ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) ) |
| 40 |
1 4 25 11 34 2
|
ismhm |
|- ( H e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( H : B --> ( Base ` T ) /\ A. a e. B A. b e. B ( H ` ( a ( +g ` S ) b ) ) = ( ( H ` a ) ( +g ` T ) ( H ` b ) ) /\ ( H ` ( 0g ` S ) ) = .0. ) ) ) |
| 41 |
39 40
|
sylibr |
|- ( ( S e. Mnd /\ T e. Mnd ) -> H e. ( S MndHom T ) ) |