| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0rhm.b |  |-  B = ( Base ` S ) | 
						
							| 2 |  | c0rhm.0 |  |-  .0. = ( 0g ` T ) | 
						
							| 3 |  | c0rhm.h |  |-  H = ( x e. B |-> .0. ) | 
						
							| 4 |  | eldifi |  |-  ( T e. ( Ring \ NzRing ) -> T e. Ring ) | 
						
							| 5 | 4 | anim2i |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( S e. Ring /\ T e. Ring ) ) | 
						
							| 6 |  | ringgrp |  |-  ( S e. Ring -> S e. Grp ) | 
						
							| 7 |  | ringgrp |  |-  ( T e. Ring -> T e. Grp ) | 
						
							| 8 | 4 7 | syl |  |-  ( T e. ( Ring \ NzRing ) -> T e. Grp ) | 
						
							| 9 | 1 2 3 | c0ghm |  |-  ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) | 
						
							| 10 | 6 8 9 | syl2an |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S GrpHom T ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 12 |  | eqid |  |-  ( 1r ` T ) = ( 1r ` T ) | 
						
							| 13 | 11 2 12 | 0ring1eq0 |  |-  ( T e. ( Ring \ NzRing ) -> ( 1r ` T ) = .0. ) | 
						
							| 14 | 13 | eqcomd |  |-  ( T e. ( Ring \ NzRing ) -> .0. = ( 1r ` T ) ) | 
						
							| 15 | 14 | mpteq2dv |  |-  ( T e. ( Ring \ NzRing ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) | 
						
							| 17 | 3 16 | eqtrid |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H = ( x e. B |-> ( 1r ` T ) ) ) | 
						
							| 18 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 19 | 18 | ringmgp |  |-  ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) | 
						
							| 20 |  | eqid |  |-  ( mulGrp ` T ) = ( mulGrp ` T ) | 
						
							| 21 | 20 | ringmgp |  |-  ( T e. Ring -> ( mulGrp ` T ) e. Mnd ) | 
						
							| 22 | 4 21 | syl |  |-  ( T e. ( Ring \ NzRing ) -> ( mulGrp ` T ) e. Mnd ) | 
						
							| 23 | 18 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` S ) ) | 
						
							| 24 | 20 12 | ringidval |  |-  ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) | 
						
							| 25 |  | eqid |  |-  ( x e. B |-> ( 1r ` T ) ) = ( x e. B |-> ( 1r ` T ) ) | 
						
							| 26 | 23 24 25 | c0mhm |  |-  ( ( ( mulGrp ` S ) e. Mnd /\ ( mulGrp ` T ) e. Mnd ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 27 | 19 22 26 | syl2an |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 28 | 17 27 | eqeltrd |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) | 
						
							| 29 | 10 28 | jca |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) | 
						
							| 30 | 18 20 | isrhm |  |-  ( H e. ( S RingHom T ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) | 
						
							| 31 | 5 29 30 | sylanbrc |  |-  ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RingHom T ) ) |