| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrrhm.b |
|- B = ( Base ` T ) |
| 2 |
|
zrrhm.0 |
|- .0. = ( 0g ` S ) |
| 3 |
|
zrrhm.h |
|- H = ( x e. B |-> .0. ) |
| 4 |
|
c0snmhm.z |
|- Z = ( 0g ` T ) |
| 5 |
|
pm3.22 |
|- ( ( S e. Mnd /\ T e. Mnd ) -> ( T e. Mnd /\ S e. Mnd ) ) |
| 6 |
5
|
3adant3 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( T e. Mnd /\ S e. Mnd ) ) |
| 7 |
|
simp1 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> S e. Mnd ) |
| 8 |
|
mndmgm |
|- ( T e. Mnd -> T e. Mgm ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> T e. Mgm ) |
| 10 |
|
fveq2 |
|- ( B = { Z } -> ( # ` B ) = ( # ` { Z } ) ) |
| 11 |
4
|
fvexi |
|- Z e. _V |
| 12 |
|
hashsng |
|- ( Z e. _V -> ( # ` { Z } ) = 1 ) |
| 13 |
11 12
|
ax-mp |
|- ( # ` { Z } ) = 1 |
| 14 |
10 13
|
eqtrdi |
|- ( B = { Z } -> ( # ` B ) = 1 ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( # ` B ) = 1 ) |
| 16 |
1 2 3
|
c0snmgmhm |
|- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> H e. ( T MgmHom S ) ) |
| 17 |
7 9 15 16
|
syl3anc |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MgmHom S ) ) |
| 18 |
3
|
a1i |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H = ( x e. B |-> .0. ) ) |
| 19 |
|
eqidd |
|- ( ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) /\ x = Z ) -> .0. = .0. ) |
| 20 |
11
|
snid |
|- Z e. { Z } |
| 21 |
|
eleq2 |
|- ( B = { Z } -> ( Z e. B <-> Z e. { Z } ) ) |
| 22 |
20 21
|
mpbiri |
|- ( B = { Z } -> Z e. B ) |
| 23 |
22
|
3ad2ant3 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> Z e. B ) |
| 24 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 25 |
24 2
|
mndidcl |
|- ( S e. Mnd -> .0. e. ( Base ` S ) ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> .0. e. ( Base ` S ) ) |
| 27 |
18 19 23 26
|
fvmptd |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( H ` Z ) = .0. ) |
| 28 |
17 27
|
jca |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( H e. ( T MgmHom S ) /\ ( H ` Z ) = .0. ) ) |
| 29 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
| 30 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 31 |
1 24 29 30 4 2
|
ismhm0 |
|- ( H e. ( T MndHom S ) <-> ( ( T e. Mnd /\ S e. Mnd ) /\ ( H e. ( T MgmHom S ) /\ ( H ` Z ) = .0. ) ) ) |
| 32 |
6 28 31
|
sylanbrc |
|- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MndHom S ) ) |