| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c1lip2.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | c1lip2.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | c1lip2.f |  |-  ( ph -> F e. ( ( C^n ` RR ) ` 1 ) ) | 
						
							| 4 |  | c1lip2.rn |  |-  ( ph -> ran F C_ RR ) | 
						
							| 5 |  | c1lip2.dm |  |-  ( ph -> ( A [,] B ) C_ dom F ) | 
						
							| 6 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 7 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 8 |  | elcpn |  |-  ( ( RR C_ CC /\ 1 e. NN0 ) -> ( F e. ( ( C^n ` RR ) ` 1 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( F e. ( ( C^n ` RR ) ` 1 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) ) | 
						
							| 10 | 9 | simplbi |  |-  ( F e. ( ( C^n ` RR ) ` 1 ) -> F e. ( CC ^pm RR ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> F e. ( CC ^pm RR ) ) | 
						
							| 12 |  | pmfun |  |-  ( F e. ( CC ^pm RR ) -> Fun F ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> Fun F ) | 
						
							| 14 | 13 | funfnd |  |-  ( ph -> F Fn dom F ) | 
						
							| 15 |  | df-f |  |-  ( F : dom F --> RR <-> ( F Fn dom F /\ ran F C_ RR ) ) | 
						
							| 16 | 14 4 15 | sylanbrc |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 17 |  | cnex |  |-  CC e. _V | 
						
							| 18 |  | reex |  |-  RR e. _V | 
						
							| 19 | 17 18 | elpm2 |  |-  ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 20 | 19 | simprbi |  |-  ( F e. ( CC ^pm RR ) -> dom F C_ RR ) | 
						
							| 21 | 11 20 | syl |  |-  ( ph -> dom F C_ RR ) | 
						
							| 22 |  | dvfre |  |-  ( ( F : dom F --> RR /\ dom F C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 23 | 16 21 22 | syl2anc |  |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 24 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 25 | 24 | fveq2i |  |-  ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( ( RR Dn F ) ` 1 ) | 
						
							| 26 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 27 |  | dvnp1 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ 0 e. NN0 ) -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) | 
						
							| 28 | 6 26 27 | mp3an13 |  |-  ( F e. ( CC ^pm RR ) -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) | 
						
							| 29 | 11 28 | syl |  |-  ( ph -> ( ( RR Dn F ) ` ( 0 + 1 ) ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) | 
						
							| 30 | 25 29 | eqtr3id |  |-  ( ph -> ( ( RR Dn F ) ` 1 ) = ( RR _D ( ( RR Dn F ) ` 0 ) ) ) | 
						
							| 31 |  | dvn0 |  |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) ) -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 32 | 6 11 31 | sylancr |  |-  ( ph -> ( ( RR Dn F ) ` 0 ) = F ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ph -> ( RR _D ( ( RR Dn F ) ` 0 ) ) = ( RR _D F ) ) | 
						
							| 34 | 30 33 | eqtrd |  |-  ( ph -> ( ( RR Dn F ) ` 1 ) = ( RR _D F ) ) | 
						
							| 35 | 9 | simprbi |  |-  ( F e. ( ( C^n ` RR ) ` 1 ) -> ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) | 
						
							| 36 | 3 35 | syl |  |-  ( ph -> ( ( RR Dn F ) ` 1 ) e. ( dom F -cn-> CC ) ) | 
						
							| 37 | 34 36 | eqeltrrd |  |-  ( ph -> ( RR _D F ) e. ( dom F -cn-> CC ) ) | 
						
							| 38 |  | cncff |  |-  ( ( RR _D F ) e. ( dom F -cn-> CC ) -> ( RR _D F ) : dom F --> CC ) | 
						
							| 39 |  | fdm |  |-  ( ( RR _D F ) : dom F --> CC -> dom ( RR _D F ) = dom F ) | 
						
							| 40 | 37 38 39 | 3syl |  |-  ( ph -> dom ( RR _D F ) = dom F ) | 
						
							| 41 | 40 | feq2d |  |-  ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : dom F --> RR ) ) | 
						
							| 42 | 23 41 | mpbid |  |-  ( ph -> ( RR _D F ) : dom F --> RR ) | 
						
							| 43 |  | cncfcdm |  |-  ( ( RR C_ CC /\ ( RR _D F ) e. ( dom F -cn-> CC ) ) -> ( ( RR _D F ) e. ( dom F -cn-> RR ) <-> ( RR _D F ) : dom F --> RR ) ) | 
						
							| 44 | 6 37 43 | sylancr |  |-  ( ph -> ( ( RR _D F ) e. ( dom F -cn-> RR ) <-> ( RR _D F ) : dom F --> RR ) ) | 
						
							| 45 | 42 44 | mpbird |  |-  ( ph -> ( RR _D F ) e. ( dom F -cn-> RR ) ) | 
						
							| 46 |  | rescncf |  |-  ( ( A [,] B ) C_ dom F -> ( ( RR _D F ) e. ( dom F -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) | 
						
							| 47 | 5 45 46 | sylc |  |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 48 | 18 | prid1 |  |-  RR e. { RR , CC } | 
						
							| 49 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 50 |  | cpnord |  |-  ( ( RR e. { RR , CC } /\ 0 e. NN0 /\ 1 e. ( ZZ>= ` 0 ) ) -> ( ( C^n ` RR ) ` 1 ) C_ ( ( C^n ` RR ) ` 0 ) ) | 
						
							| 51 | 48 26 49 50 | mp3an |  |-  ( ( C^n ` RR ) ` 1 ) C_ ( ( C^n ` RR ) ` 0 ) | 
						
							| 52 | 51 3 | sselid |  |-  ( ph -> F e. ( ( C^n ` RR ) ` 0 ) ) | 
						
							| 53 |  | elcpn |  |-  ( ( RR C_ CC /\ 0 e. NN0 ) -> ( F e. ( ( C^n ` RR ) ` 0 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) ) | 
						
							| 54 | 6 26 53 | mp2an |  |-  ( F e. ( ( C^n ` RR ) ` 0 ) <-> ( F e. ( CC ^pm RR ) /\ ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) ) | 
						
							| 55 | 54 | simprbi |  |-  ( F e. ( ( C^n ` RR ) ` 0 ) -> ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) | 
						
							| 56 | 52 55 | syl |  |-  ( ph -> ( ( RR Dn F ) ` 0 ) e. ( dom F -cn-> CC ) ) | 
						
							| 57 | 32 56 | eqeltrrd |  |-  ( ph -> F e. ( dom F -cn-> CC ) ) | 
						
							| 58 |  | cncfcdm |  |-  ( ( RR C_ CC /\ F e. ( dom F -cn-> CC ) ) -> ( F e. ( dom F -cn-> RR ) <-> F : dom F --> RR ) ) | 
						
							| 59 | 6 57 58 | sylancr |  |-  ( ph -> ( F e. ( dom F -cn-> RR ) <-> F : dom F --> RR ) ) | 
						
							| 60 | 16 59 | mpbird |  |-  ( ph -> F e. ( dom F -cn-> RR ) ) | 
						
							| 61 |  | rescncf |  |-  ( ( A [,] B ) C_ dom F -> ( F e. ( dom F -cn-> RR ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) | 
						
							| 62 | 5 60 61 | sylc |  |-  ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 63 | 1 2 11 47 62 | c1lip1 |  |-  ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |