| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c1lip3.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | c1lip3.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | c1lip3.f |  |-  ( ph -> ( F |` RR ) e. ( ( C^n ` RR ) ` 1 ) ) | 
						
							| 4 |  | c1lip3.rn |  |-  ( ph -> ( F " RR ) C_ RR ) | 
						
							| 5 |  | c1lip3.dm |  |-  ( ph -> ( A [,] B ) C_ dom F ) | 
						
							| 6 |  | df-ima |  |-  ( F " RR ) = ran ( F |` RR ) | 
						
							| 7 | 6 4 | eqsstrrid |  |-  ( ph -> ran ( F |` RR ) C_ RR ) | 
						
							| 8 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 9 | 1 2 8 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 10 | 9 5 | ssind |  |-  ( ph -> ( A [,] B ) C_ ( RR i^i dom F ) ) | 
						
							| 11 |  | dmres |  |-  dom ( F |` RR ) = ( RR i^i dom F ) | 
						
							| 12 | 10 11 | sseqtrrdi |  |-  ( ph -> ( A [,] B ) C_ dom ( F |` RR ) ) | 
						
							| 13 | 1 2 3 7 12 | c1lip2 |  |-  ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) | 
						
							| 14 | 9 | sseld |  |-  ( ph -> ( x e. ( A [,] B ) -> x e. RR ) ) | 
						
							| 15 | 9 | sseld |  |-  ( ph -> ( y e. ( A [,] B ) -> y e. RR ) ) | 
						
							| 16 | 14 15 | anim12d |  |-  ( ph -> ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x e. RR /\ y e. RR ) ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x e. RR /\ y e. RR ) ) | 
						
							| 18 |  | fvres |  |-  ( y e. RR -> ( ( F |` RR ) ` y ) = ( F ` y ) ) | 
						
							| 19 |  | fvres |  |-  ( x e. RR -> ( ( F |` RR ) ` x ) = ( F ` x ) ) | 
						
							| 20 | 18 19 | oveqan12rd |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( x e. RR /\ y e. RR ) -> ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) = ( abs ` ( ( F ` y ) - ( F ` x ) ) ) ) | 
						
							| 22 | 21 | breq1d |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 23 | 22 | biimpd |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 24 | 17 23 | syl |  |-  ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 25 | 24 | ralimdvva |  |-  ( ph -> ( A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 26 | 25 | reximdv |  |-  ( ph -> ( E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( ( F |` RR ) ` y ) - ( ( F |` RR ) ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 27 | 13 26 | mpd |  |-  ( ph -> E. k e. RR A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( k x. ( abs ` ( y - x ) ) ) ) |