Step |
Hyp |
Ref |
Expression |
1 |
|
c1liplem1.a |
|- ( ph -> A e. RR ) |
2 |
|
c1liplem1.b |
|- ( ph -> B e. RR ) |
3 |
|
c1liplem1.le |
|- ( ph -> A <_ B ) |
4 |
|
c1liplem1.f |
|- ( ph -> F e. ( CC ^pm RR ) ) |
5 |
|
c1liplem1.dv |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
6 |
|
c1liplem1.cn |
|- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
7 |
|
c1liplem1.k |
|- K = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) |
8 |
|
imassrn |
|- ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ ran abs |
9 |
|
absf |
|- abs : CC --> RR |
10 |
|
frn |
|- ( abs : CC --> RR -> ran abs C_ RR ) |
11 |
9 10
|
ax-mp |
|- ran abs C_ RR |
12 |
8 11
|
sstri |
|- ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR |
13 |
12
|
a1i |
|- ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) |
14 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
15 |
|
ffun |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
16 |
14 15
|
ax-mp |
|- Fun ( RR _D F ) |
17 |
16
|
a1i |
|- ( ph -> Fun ( RR _D F ) ) |
18 |
|
cncff |
|- ( ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
19 |
|
fdm |
|- ( ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
20 |
5 18 19
|
3syl |
|- ( ph -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
21 |
|
ssdmres |
|- ( ( A [,] B ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
22 |
20 21
|
sylibr |
|- ( ph -> ( A [,] B ) C_ dom ( RR _D F ) ) |
23 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
24 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
25 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
26 |
23 24 3 25
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
27 |
|
funfvima2 |
|- ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( A e. ( A [,] B ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
28 |
27
|
imp |
|- ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ A e. ( A [,] B ) ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
29 |
17 22 26 28
|
syl21anc |
|- ( ph -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
30 |
|
ffun |
|- ( abs : CC --> RR -> Fun abs ) |
31 |
9 30
|
ax-mp |
|- Fun abs |
32 |
|
imassrn |
|- ( ( RR _D F ) " ( A [,] B ) ) C_ ran ( RR _D F ) |
33 |
|
frn |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ran ( RR _D F ) C_ CC ) |
34 |
14 33
|
ax-mp |
|- ran ( RR _D F ) C_ CC |
35 |
32 34
|
sstri |
|- ( ( RR _D F ) " ( A [,] B ) ) C_ CC |
36 |
9
|
fdmi |
|- dom abs = CC |
37 |
35 36
|
sseqtrri |
|- ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs |
38 |
|
funfvima2 |
|- ( ( Fun abs /\ ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs ) -> ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
39 |
31 37 38
|
mp2an |
|- ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
40 |
|
ne0i |
|- ( ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
41 |
29 39 40
|
3syl |
|- ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
42 |
|
ax-resscn |
|- RR C_ CC |
43 |
|
ssid |
|- CC C_ CC |
44 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
45 |
42 43 44
|
mp2an |
|- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
46 |
45 5
|
sselid |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
47 |
|
cniccbdd |
|- ( ( A e. RR /\ B e. RR /\ ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) |
48 |
1 2 46 47
|
syl3anc |
|- ( ph -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) |
49 |
|
fvelima |
|- ( ( Fun abs /\ b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) |
50 |
31 49
|
mpan |
|- ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) |
51 |
|
fvres |
|- ( b e. ( A [,] B ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) |
52 |
51
|
adantl |
|- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) |
53 |
52
|
fveq2d |
|- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) = ( abs ` ( ( RR _D F ) ` b ) ) ) |
54 |
|
2fveq3 |
|- ( x = b -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) = ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) ) |
55 |
54
|
breq1d |
|- ( x = b -> ( ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a <-> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) ) |
56 |
55
|
rspccva |
|- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) |
57 |
53 56
|
eqbrtrrd |
|- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) |
58 |
57
|
adantll |
|- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) |
59 |
|
fveq2 |
|- ( ( ( RR _D F ) ` b ) = y -> ( abs ` ( ( RR _D F ) ` b ) ) = ( abs ` y ) ) |
60 |
59
|
breq1d |
|- ( ( ( RR _D F ) ` b ) = y -> ( ( abs ` ( ( RR _D F ) ` b ) ) <_ a <-> ( abs ` y ) <_ a ) ) |
61 |
58 60
|
syl5ibcom |
|- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) |
62 |
61
|
rexlimdva |
|- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) |
63 |
|
fvelima |
|- ( ( Fun ( RR _D F ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) |
64 |
16 63
|
mpan |
|- ( y e. ( ( RR _D F ) " ( A [,] B ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) |
65 |
62 64
|
impel |
|- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` y ) <_ a ) |
66 |
|
breq1 |
|- ( ( abs ` y ) = b -> ( ( abs ` y ) <_ a <-> b <_ a ) ) |
67 |
65 66
|
syl5ibcom |
|- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( ( abs ` y ) = b -> b <_ a ) ) |
68 |
67
|
rexlimdva |
|- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b -> b <_ a ) ) |
69 |
50 68
|
syl5 |
|- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> b <_ a ) ) |
70 |
69
|
ralrimiv |
|- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
71 |
70
|
ex |
|- ( ( ph /\ a e. RR ) -> ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) |
72 |
71
|
reximdva |
|- ( ph -> ( E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) |
73 |
48 72
|
mpd |
|- ( ph -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
74 |
13 41 73
|
suprcld |
|- ( ph -> sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) e. RR ) |
75 |
7 74
|
eqeltrid |
|- ( ph -> K e. RR ) |
76 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
77 |
76
|
fvresd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) = ( F ` y ) ) |
78 |
|
cncff |
|- ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
79 |
6 78
|
syl |
|- ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
80 |
79
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
81 |
80 76
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. RR ) |
82 |
81
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. CC ) |
83 |
77 82
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. CC ) |
84 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
85 |
84
|
fvresd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) = ( F ` x ) ) |
86 |
80 84
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. RR ) |
87 |
86
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. CC ) |
88 |
85 87
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. CC ) |
89 |
83 88
|
subcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. CC ) |
90 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
91 |
1 2 90
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
92 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
93 |
92 76
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
94 |
92 84
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
95 |
93 94
|
resubcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
96 |
95
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. CC ) |
97 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
98 |
|
difrp |
|- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( y - x ) e. RR+ ) ) |
99 |
94 93 98
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> ( y - x ) e. RR+ ) ) |
100 |
97 99
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR+ ) |
101 |
100
|
rpne0d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) =/= 0 ) |
102 |
89 96 101
|
absdivd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) ) |
103 |
12
|
a1i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) |
104 |
41
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
105 |
73
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
106 |
31
|
a1i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> Fun abs ) |
107 |
89 96 101
|
divcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. CC ) |
108 |
107 36
|
eleqtrrdi |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) |
109 |
94
|
rexrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR* ) |
110 |
93
|
rexrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR* ) |
111 |
94 93 97
|
ltled |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x <_ y ) |
112 |
|
ubicc2 |
|- ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> y e. ( x [,] y ) ) |
113 |
109 110 111 112
|
syl3anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( x [,] y ) ) |
114 |
113
|
fvresd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` y ) = ( F ` y ) ) |
115 |
|
lbicc2 |
|- ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> x e. ( x [,] y ) ) |
116 |
109 110 111 115
|
syl3anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( x [,] y ) ) |
117 |
116
|
fvresd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` x ) = ( F ` x ) ) |
118 |
114 117
|
oveq12d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) |
119 |
118
|
oveq1d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) = ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
120 |
|
iccss2 |
|- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) |
121 |
120
|
ad2antlr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ ( A [,] B ) ) |
122 |
121
|
resabs1d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) = ( F |` ( x [,] y ) ) ) |
123 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
124 |
|
rescncf |
|- ( ( x [,] y ) C_ ( A [,] B ) -> ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) ) |
125 |
121 123 124
|
sylc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) |
126 |
122 125
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) |
127 |
42
|
a1i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> RR C_ CC ) |
128 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F e. ( CC ^pm RR ) ) |
129 |
|
cnex |
|- CC e. _V |
130 |
|
reex |
|- RR e. _V |
131 |
129 130
|
elpm2 |
|- ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) |
132 |
131
|
simplbi |
|- ( F e. ( CC ^pm RR ) -> F : dom F --> CC ) |
133 |
128 132
|
syl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : dom F --> CC ) |
134 |
131
|
simprbi |
|- ( F e. ( CC ^pm RR ) -> dom F C_ RR ) |
135 |
128 134
|
syl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom F C_ RR ) |
136 |
|
iccssre |
|- ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) |
137 |
94 93 136
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ RR ) |
138 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
139 |
138
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
140 |
138 139
|
dvres |
|- ( ( ( RR C_ CC /\ F : dom F --> CC ) /\ ( dom F C_ RR /\ ( x [,] y ) C_ RR ) ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) |
141 |
127 133 135 137 140
|
syl22anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) |
142 |
|
iccntr |
|- ( ( x e. RR /\ y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
143 |
94 93 142
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
144 |
143
|
reseq2d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) |
145 |
141 144
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) |
146 |
145
|
dmeqd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = dom ( ( RR _D F ) |` ( x (,) y ) ) ) |
147 |
|
ioossicc |
|- ( x (,) y ) C_ ( x [,] y ) |
148 |
147 121
|
sstrid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ ( A [,] B ) ) |
149 |
22
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ dom ( RR _D F ) ) |
150 |
148 149
|
sstrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ dom ( RR _D F ) ) |
151 |
|
ssdmres |
|- ( ( x (,) y ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) |
152 |
150 151
|
sylib |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) |
153 |
146 152
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = ( x (,) y ) ) |
154 |
94 93 97 126 153
|
mvth |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) ) |
155 |
145
|
fveq1d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) |
156 |
155
|
adantrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) |
157 |
|
fvres |
|- ( a e. ( x (,) y ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
158 |
157
|
ad2antll |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
159 |
156 158
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
160 |
16
|
a1i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> Fun ( RR _D F ) ) |
161 |
22
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( A [,] B ) C_ dom ( RR _D F ) ) |
162 |
148
|
sseld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> a e. ( A [,] B ) ) ) |
163 |
162
|
impr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> a e. ( A [,] B ) ) |
164 |
|
funfvima2 |
|- ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( a e. ( A [,] B ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
165 |
164
|
imp |
|- ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ a e. ( A [,] B ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
166 |
160 161 163 165
|
syl21anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
167 |
159 166
|
eqeltrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
168 |
|
eleq1 |
|- ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) <-> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
169 |
167 168
|
syl5ibcom |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
170 |
169
|
expr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
171 |
170
|
rexlimdv |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
172 |
154 171
|
mpd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
173 |
119 172
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
174 |
|
funfvima |
|- ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
175 |
174
|
imp |
|- ( ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
176 |
106 108 173 175
|
syl21anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
177 |
103 104 105 176
|
suprubd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) ) |
178 |
177 7
|
breqtrrdi |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ K ) |
179 |
102 178
|
eqbrtrrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K ) |
180 |
89
|
abscld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) e. RR ) |
181 |
75
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. RR ) |
182 |
96 101
|
absrpcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. RR+ ) |
183 |
180 181 182
|
ledivmuld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) ) |
184 |
179 183
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) |
185 |
182
|
rpcnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. CC ) |
186 |
181
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. CC ) |
187 |
185 186
|
mulcomd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( y - x ) ) x. K ) = ( K x. ( abs ` ( y - x ) ) ) ) |
188 |
184 187
|
breqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) |
189 |
188
|
ex |
|- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) |
190 |
189
|
ralrimivva |
|- ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) |
191 |
75 190
|
jca |
|- ( ph -> ( K e. RR /\ A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) ) |