| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c1liplem1.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | c1liplem1.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | c1liplem1.le |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | c1liplem1.f |  |-  ( ph -> F e. ( CC ^pm RR ) ) | 
						
							| 5 |  | c1liplem1.dv |  |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 6 |  | c1liplem1.cn |  |-  ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 7 |  | c1liplem1.k |  |-  K = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) | 
						
							| 8 |  | imassrn |  |-  ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ ran abs | 
						
							| 9 |  | absf |  |-  abs : CC --> RR | 
						
							| 10 |  | frn |  |-  ( abs : CC --> RR -> ran abs C_ RR ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ran abs C_ RR | 
						
							| 12 | 8 11 | sstri |  |-  ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) | 
						
							| 14 |  | dvf |  |-  ( RR _D F ) : dom ( RR _D F ) --> CC | 
						
							| 15 |  | ffun |  |-  ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  Fun ( RR _D F ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> Fun ( RR _D F ) ) | 
						
							| 18 |  | cncff |  |-  ( ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 19 |  | fdm |  |-  ( ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) | 
						
							| 20 | 5 18 19 | 3syl |  |-  ( ph -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) | 
						
							| 21 |  | ssdmres |  |-  ( ( A [,] B ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ph -> ( A [,] B ) C_ dom ( RR _D F ) ) | 
						
							| 23 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 24 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 25 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 26 | 23 24 3 25 | syl3anc |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 27 |  | funfvima2 |  |-  ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( A e. ( A [,] B ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ A e. ( A [,] B ) ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 29 | 17 22 26 28 | syl21anc |  |-  ( ph -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 30 |  | ffun |  |-  ( abs : CC --> RR -> Fun abs ) | 
						
							| 31 | 9 30 | ax-mp |  |-  Fun abs | 
						
							| 32 |  | imassrn |  |-  ( ( RR _D F ) " ( A [,] B ) ) C_ ran ( RR _D F ) | 
						
							| 33 |  | frn |  |-  ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ran ( RR _D F ) C_ CC ) | 
						
							| 34 | 14 33 | ax-mp |  |-  ran ( RR _D F ) C_ CC | 
						
							| 35 | 32 34 | sstri |  |-  ( ( RR _D F ) " ( A [,] B ) ) C_ CC | 
						
							| 36 | 9 | fdmi |  |-  dom abs = CC | 
						
							| 37 | 35 36 | sseqtrri |  |-  ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs | 
						
							| 38 |  | funfvima2 |  |-  ( ( Fun abs /\ ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs ) -> ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) | 
						
							| 39 | 31 37 38 | mp2an |  |-  ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 40 |  | ne0i |  |-  ( ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) | 
						
							| 41 | 29 39 40 | 3syl |  |-  ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) | 
						
							| 42 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 43 |  | ssid |  |-  CC C_ CC | 
						
							| 44 |  | cncfss |  |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 45 | 42 43 44 | mp2an |  |-  ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) | 
						
							| 46 | 45 5 | sselid |  |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 47 |  | cniccbdd |  |-  ( ( A e. RR /\ B e. RR /\ ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) | 
						
							| 48 | 1 2 46 47 | syl3anc |  |-  ( ph -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) | 
						
							| 49 |  | fvelima |  |-  ( ( Fun abs /\ b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) | 
						
							| 50 | 31 49 | mpan |  |-  ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) | 
						
							| 51 |  | fvres |  |-  ( b e. ( A [,] B ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) = ( abs ` ( ( RR _D F ) ` b ) ) ) | 
						
							| 54 |  | 2fveq3 |  |-  ( x = b -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) = ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) ) | 
						
							| 55 | 54 | breq1d |  |-  ( x = b -> ( ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a <-> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) ) | 
						
							| 56 | 55 | rspccva |  |-  ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) | 
						
							| 57 | 53 56 | eqbrtrrd |  |-  ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) | 
						
							| 58 | 57 | adantll |  |-  ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) | 
						
							| 59 |  | fveq2 |  |-  ( ( ( RR _D F ) ` b ) = y -> ( abs ` ( ( RR _D F ) ` b ) ) = ( abs ` y ) ) | 
						
							| 60 | 59 | breq1d |  |-  ( ( ( RR _D F ) ` b ) = y -> ( ( abs ` ( ( RR _D F ) ` b ) ) <_ a <-> ( abs ` y ) <_ a ) ) | 
						
							| 61 | 58 60 | syl5ibcom |  |-  ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) | 
						
							| 62 | 61 | rexlimdva |  |-  ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) | 
						
							| 63 |  | fvelima |  |-  ( ( Fun ( RR _D F ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) | 
						
							| 64 | 16 63 | mpan |  |-  ( y e. ( ( RR _D F ) " ( A [,] B ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) | 
						
							| 65 | 62 64 | impel |  |-  ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` y ) <_ a ) | 
						
							| 66 |  | breq1 |  |-  ( ( abs ` y ) = b -> ( ( abs ` y ) <_ a <-> b <_ a ) ) | 
						
							| 67 | 65 66 | syl5ibcom |  |-  ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( ( abs ` y ) = b -> b <_ a ) ) | 
						
							| 68 | 67 | rexlimdva |  |-  ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b -> b <_ a ) ) | 
						
							| 69 | 50 68 | syl5 |  |-  ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> b <_ a ) ) | 
						
							| 70 | 69 | ralrimiv |  |-  ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) | 
						
							| 71 | 70 | ex |  |-  ( ( ph /\ a e. RR ) -> ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) | 
						
							| 72 | 71 | reximdva |  |-  ( ph -> ( E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) | 
						
							| 73 | 48 72 | mpd |  |-  ( ph -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) | 
						
							| 74 | 13 41 73 | suprcld |  |-  ( ph -> sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) e. RR ) | 
						
							| 75 | 7 74 | eqeltrid |  |-  ( ph -> K e. RR ) | 
						
							| 76 |  | simplrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) | 
						
							| 77 | 76 | fvresd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) = ( F ` y ) ) | 
						
							| 78 |  | cncff |  |-  ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 79 | 6 78 | syl |  |-  ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 80 | 79 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 81 | 80 76 | ffvelcdmd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. RR ) | 
						
							| 82 | 81 | recnd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. CC ) | 
						
							| 83 | 77 82 | eqeltrrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. CC ) | 
						
							| 84 |  | simplrl |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) | 
						
							| 85 | 84 | fvresd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) = ( F ` x ) ) | 
						
							| 86 | 80 84 | ffvelcdmd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. RR ) | 
						
							| 87 | 86 | recnd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. CC ) | 
						
							| 88 | 85 87 | eqeltrrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. CC ) | 
						
							| 89 | 83 88 | subcld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. CC ) | 
						
							| 90 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 91 | 1 2 90 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 92 | 91 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) | 
						
							| 93 | 92 76 | sseldd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) | 
						
							| 94 | 92 84 | sseldd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) | 
						
							| 95 | 93 94 | resubcld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) | 
						
							| 96 | 95 | recnd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. CC ) | 
						
							| 97 |  | simpr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) | 
						
							| 98 |  | difrp |  |-  ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( y - x ) e. RR+ ) ) | 
						
							| 99 | 94 93 98 | syl2anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> ( y - x ) e. RR+ ) ) | 
						
							| 100 | 97 99 | mpbid |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR+ ) | 
						
							| 101 | 100 | rpne0d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) =/= 0 ) | 
						
							| 102 | 89 96 101 | absdivd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) ) | 
						
							| 103 | 12 | a1i |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) | 
						
							| 104 | 41 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) | 
						
							| 105 | 73 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) | 
						
							| 106 | 31 | a1i |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> Fun abs ) | 
						
							| 107 | 89 96 101 | divcld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. CC ) | 
						
							| 108 | 107 36 | eleqtrrdi |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) | 
						
							| 109 | 94 | rexrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR* ) | 
						
							| 110 | 93 | rexrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR* ) | 
						
							| 111 | 94 93 97 | ltled |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x <_ y ) | 
						
							| 112 |  | ubicc2 |  |-  ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> y e. ( x [,] y ) ) | 
						
							| 113 | 109 110 111 112 | syl3anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( x [,] y ) ) | 
						
							| 114 | 113 | fvresd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` y ) = ( F ` y ) ) | 
						
							| 115 |  | lbicc2 |  |-  ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> x e. ( x [,] y ) ) | 
						
							| 116 | 109 110 111 115 | syl3anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( x [,] y ) ) | 
						
							| 117 | 116 | fvresd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` x ) = ( F ` x ) ) | 
						
							| 118 | 114 117 | oveq12d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) = ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) | 
						
							| 120 |  | iccss2 |  |-  ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) | 
						
							| 121 | 120 | ad2antlr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ ( A [,] B ) ) | 
						
							| 122 | 121 | resabs1d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) = ( F |` ( x [,] y ) ) ) | 
						
							| 123 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 124 |  | rescncf |  |-  ( ( x [,] y ) C_ ( A [,] B ) -> ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) ) | 
						
							| 125 | 121 123 124 | sylc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) | 
						
							| 126 | 122 125 | eqeltrrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) | 
						
							| 127 | 42 | a1i |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> RR C_ CC ) | 
						
							| 128 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F e. ( CC ^pm RR ) ) | 
						
							| 129 |  | cnex |  |-  CC e. _V | 
						
							| 130 |  | reex |  |-  RR e. _V | 
						
							| 131 | 129 130 | elpm2 |  |-  ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) | 
						
							| 132 | 131 | simplbi |  |-  ( F e. ( CC ^pm RR ) -> F : dom F --> CC ) | 
						
							| 133 | 128 132 | syl |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : dom F --> CC ) | 
						
							| 134 | 131 | simprbi |  |-  ( F e. ( CC ^pm RR ) -> dom F C_ RR ) | 
						
							| 135 | 128 134 | syl |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom F C_ RR ) | 
						
							| 136 |  | iccssre |  |-  ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) | 
						
							| 137 | 94 93 136 | syl2anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ RR ) | 
						
							| 138 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 139 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 140 | 138 139 | dvres |  |-  ( ( ( RR C_ CC /\ F : dom F --> CC ) /\ ( dom F C_ RR /\ ( x [,] y ) C_ RR ) ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) | 
						
							| 141 | 127 133 135 137 140 | syl22anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) | 
						
							| 142 |  | iccntr |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) | 
						
							| 143 | 94 93 142 | syl2anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) | 
						
							| 144 | 143 | reseq2d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) | 
						
							| 145 | 141 144 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) | 
						
							| 146 | 145 | dmeqd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = dom ( ( RR _D F ) |` ( x (,) y ) ) ) | 
						
							| 147 |  | ioossicc |  |-  ( x (,) y ) C_ ( x [,] y ) | 
						
							| 148 | 147 121 | sstrid |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ ( A [,] B ) ) | 
						
							| 149 | 22 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ dom ( RR _D F ) ) | 
						
							| 150 | 148 149 | sstrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ dom ( RR _D F ) ) | 
						
							| 151 |  | ssdmres |  |-  ( ( x (,) y ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) | 
						
							| 152 | 150 151 | sylib |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) | 
						
							| 153 | 146 152 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = ( x (,) y ) ) | 
						
							| 154 | 94 93 97 126 153 | mvth |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) ) | 
						
							| 155 | 145 | fveq1d |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) | 
						
							| 156 | 155 | adantrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) | 
						
							| 157 |  | fvres |  |-  ( a e. ( x (,) y ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) | 
						
							| 158 | 157 | ad2antll |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) | 
						
							| 159 | 156 158 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( RR _D F ) ` a ) ) | 
						
							| 160 | 16 | a1i |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> Fun ( RR _D F ) ) | 
						
							| 161 | 22 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( A [,] B ) C_ dom ( RR _D F ) ) | 
						
							| 162 | 148 | sseld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> a e. ( A [,] B ) ) ) | 
						
							| 163 | 162 | impr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> a e. ( A [,] B ) ) | 
						
							| 164 |  | funfvima2 |  |-  ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( a e. ( A [,] B ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 165 | 164 | imp |  |-  ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ a e. ( A [,] B ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 166 | 160 161 163 165 | syl21anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 167 | 159 166 | eqeltrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 168 |  | eleq1 |  |-  ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) <-> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 169 | 167 168 | syl5ibcom |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 170 | 169 | expr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) ) | 
						
							| 171 | 170 | rexlimdv |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 172 | 154 171 | mpd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 173 | 119 172 | eqeltrrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) | 
						
							| 174 |  | funfvima |  |-  ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) | 
						
							| 175 | 174 | imp |  |-  ( ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 176 | 106 108 173 175 | syl21anc |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) | 
						
							| 177 | 103 104 105 176 | suprubd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) ) | 
						
							| 178 | 177 7 | breqtrrdi |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ K ) | 
						
							| 179 | 102 178 | eqbrtrrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K ) | 
						
							| 180 | 89 | abscld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) e. RR ) | 
						
							| 181 | 75 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. RR ) | 
						
							| 182 | 96 101 | absrpcld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. RR+ ) | 
						
							| 183 | 180 181 182 | ledivmuld |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) ) | 
						
							| 184 | 179 183 | mpbid |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) | 
						
							| 185 | 182 | rpcnd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. CC ) | 
						
							| 186 | 181 | recnd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. CC ) | 
						
							| 187 | 185 186 | mulcomd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( y - x ) ) x. K ) = ( K x. ( abs ` ( y - x ) ) ) ) | 
						
							| 188 | 184 187 | breqtrd |  |-  ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) | 
						
							| 189 | 188 | ex |  |-  ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 190 | 189 | ralrimivva |  |-  ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) | 
						
							| 191 | 75 190 | jca |  |-  ( ph -> ( K e. RR /\ A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) ) |