| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3or |
|- ( ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ps /\ ch ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ps /\ ch ) ) ) |
| 2 |
|
cador |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) \/ ( ps /\ ch ) ) ) |
| 3 |
|
andi |
|- ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) ) |
| 4 |
3
|
orbi1i |
|- ( ( ( ph /\ ( ps \/ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) \/ ( ps /\ ch ) ) ) |
| 5 |
1 2 4
|
3bitr4i |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ( ps \/ ch ) ) \/ ( ps /\ ch ) ) ) |
| 6 |
|
ordir |
|- ( ( ( ph /\ ( ps \/ ch ) ) \/ ( ps /\ ch ) ) <-> ( ( ph \/ ( ps /\ ch ) ) /\ ( ( ps \/ ch ) \/ ( ps /\ ch ) ) ) ) |
| 7 |
|
ordi |
|- ( ( ph \/ ( ps /\ ch ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) ) ) |
| 8 |
|
orcom |
|- ( ( ( ps \/ ch ) \/ ( ps /\ ch ) ) <-> ( ( ps /\ ch ) \/ ( ps \/ ch ) ) ) |
| 9 |
|
animorl |
|- ( ( ps /\ ch ) -> ( ps \/ ch ) ) |
| 10 |
|
pm4.72 |
|- ( ( ( ps /\ ch ) -> ( ps \/ ch ) ) <-> ( ( ps \/ ch ) <-> ( ( ps /\ ch ) \/ ( ps \/ ch ) ) ) ) |
| 11 |
9 10
|
mpbi |
|- ( ( ps \/ ch ) <-> ( ( ps /\ ch ) \/ ( ps \/ ch ) ) ) |
| 12 |
8 11
|
bitr4i |
|- ( ( ( ps \/ ch ) \/ ( ps /\ ch ) ) <-> ( ps \/ ch ) ) |
| 13 |
7 12
|
anbi12i |
|- ( ( ( ph \/ ( ps /\ ch ) ) /\ ( ( ps \/ ch ) \/ ( ps /\ ch ) ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ps \/ ch ) ) ) |
| 14 |
5 6 13
|
3bitri |
|- ( cadd ( ph , ps , ch ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ps \/ ch ) ) ) |
| 15 |
|
df-3an |
|- ( ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ps \/ ch ) ) ) |
| 16 |
14 15
|
bitr4i |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) ) |