| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cadbid.1 |
|- ( ph -> ( ps <-> ch ) ) |
| 2 |
|
cadbid.2 |
|- ( ph -> ( th <-> ta ) ) |
| 3 |
|
cadbid.3 |
|- ( ph -> ( et <-> ze ) ) |
| 4 |
1 2
|
anbi12d |
|- ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) ) |
| 5 |
1 2
|
xorbi12d |
|- ( ph -> ( ( ps \/_ th ) <-> ( ch \/_ ta ) ) ) |
| 6 |
3 5
|
anbi12d |
|- ( ph -> ( ( et /\ ( ps \/_ th ) ) <-> ( ze /\ ( ch \/_ ta ) ) ) ) |
| 7 |
4 6
|
orbi12d |
|- ( ph -> ( ( ( ps /\ th ) \/ ( et /\ ( ps \/_ th ) ) ) <-> ( ( ch /\ ta ) \/ ( ze /\ ( ch \/_ ta ) ) ) ) ) |
| 8 |
|
df-cad |
|- ( cadd ( ps , th , et ) <-> ( ( ps /\ th ) \/ ( et /\ ( ps \/_ th ) ) ) ) |
| 9 |
|
df-cad |
|- ( cadd ( ch , ta , ze ) <-> ( ( ch /\ ta ) \/ ( ze /\ ( ch \/_ ta ) ) ) ) |
| 10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( cadd ( ps , th , et ) <-> cadd ( ch , ta , ze ) ) ) |