| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cadan | 
							 |-  ( cadd ( ph , ps , ch ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3ancoma | 
							 |-  ( ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ps \/ ch ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							orcom | 
							 |-  ( ( ps \/ ch ) <-> ( ch \/ ps ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							3anbi3i | 
							 |-  ( ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ps \/ ch ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) )  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							3bitri | 
							 |-  ( cadd ( ph , ps , ch ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cadan | 
							 |-  ( cadd ( ph , ch , ps ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitr4i | 
							 |-  ( cadd ( ph , ps , ch ) <-> cadd ( ph , ch , ps ) )  |