| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canth2.1 |
|- A e. _V |
| 2 |
1
|
pwex |
|- ~P A e. _V |
| 3 |
|
snelpwi |
|- ( x e. A -> { x } e. ~P A ) |
| 4 |
|
vex |
|- x e. _V |
| 5 |
4
|
sneqr |
|- ( { x } = { y } -> x = y ) |
| 6 |
|
sneq |
|- ( x = y -> { x } = { y } ) |
| 7 |
5 6
|
impbii |
|- ( { x } = { y } <-> x = y ) |
| 8 |
7
|
a1i |
|- ( ( x e. A /\ y e. A ) -> ( { x } = { y } <-> x = y ) ) |
| 9 |
3 8
|
dom3 |
|- ( ( A e. _V /\ ~P A e. _V ) -> A ~<_ ~P A ) |
| 10 |
1 2 9
|
mp2an |
|- A ~<_ ~P A |
| 11 |
1
|
canth |
|- -. f : A -onto-> ~P A |
| 12 |
|
f1ofo |
|- ( f : A -1-1-onto-> ~P A -> f : A -onto-> ~P A ) |
| 13 |
11 12
|
mto |
|- -. f : A -1-1-onto-> ~P A |
| 14 |
13
|
nex |
|- -. E. f f : A -1-1-onto-> ~P A |
| 15 |
|
bren |
|- ( A ~~ ~P A <-> E. f f : A -1-1-onto-> ~P A ) |
| 16 |
14 15
|
mtbir |
|- -. A ~~ ~P A |
| 17 |
|
brsdom |
|- ( A ~< ~P A <-> ( A ~<_ ~P A /\ -. A ~~ ~P A ) ) |
| 18 |
10 16 17
|
mpbir2an |
|- A ~< ~P A |