Step |
Hyp |
Ref |
Expression |
1 |
|
canth4.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
2 |
|
canth4.2 |
|- B = U. dom W |
3 |
|
canth4.3 |
|- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
4 |
|
eqid |
|- B = B |
5 |
|
eqid |
|- ( W ` B ) = ( W ` B ) |
6 |
4 5
|
pm3.2i |
|- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
7 |
|
simp1 |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> A e. V ) |
8 |
|
simpl2 |
|- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> F : D --> A ) |
9 |
|
simp3 |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ~P A i^i dom card ) C_ D ) |
10 |
9
|
sselda |
|- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> x e. D ) |
11 |
8 10
|
ffvelrnd |
|- ( ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) /\ x e. ( ~P A i^i dom card ) ) -> ( F ` x ) e. A ) |
12 |
1 7 11 2
|
fpwwe |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( B W ( W ` B ) /\ ( F ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
13 |
6 12
|
mpbiri |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B W ( W ` B ) /\ ( F ` B ) e. B ) ) |
14 |
13
|
simpld |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> B W ( W ` B ) ) |
15 |
1 7
|
fpwwelem |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
16 |
14 15
|
mpbid |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
17 |
16
|
simpld |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) ) |
18 |
17
|
simpld |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> B C_ A ) |
19 |
|
cnvimass |
|- ( `' ( W ` B ) " { ( F ` B ) } ) C_ dom ( W ` B ) |
20 |
3 19
|
eqsstri |
|- C C_ dom ( W ` B ) |
21 |
17
|
simprd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) C_ ( B X. B ) ) |
22 |
|
dmss |
|- ( ( W ` B ) C_ ( B X. B ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
23 |
21 22
|
syl |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
24 |
|
dmxpid |
|- dom ( B X. B ) = B |
25 |
23 24
|
sseqtrdi |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> dom ( W ` B ) C_ B ) |
26 |
20 25
|
sstrid |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> C C_ B ) |
27 |
13
|
simprd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` B ) e. B ) |
28 |
16
|
simprd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) |
29 |
28
|
simpld |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) We B ) |
30 |
|
weso |
|- ( ( W ` B ) We B -> ( W ` B ) Or B ) |
31 |
29 30
|
syl |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( W ` B ) Or B ) |
32 |
|
sonr |
|- ( ( ( W ` B ) Or B /\ ( F ` B ) e. B ) -> -. ( F ` B ) ( W ` B ) ( F ` B ) ) |
33 |
31 27 32
|
syl2anc |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> -. ( F ` B ) ( W ` B ) ( F ` B ) ) |
34 |
3
|
eleq2i |
|- ( ( F ` B ) e. C <-> ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) ) |
35 |
|
fvex |
|- ( F ` B ) e. _V |
36 |
35
|
eliniseg |
|- ( ( F ` B ) e. _V -> ( ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) <-> ( F ` B ) ( W ` B ) ( F ` B ) ) ) |
37 |
35 36
|
ax-mp |
|- ( ( F ` B ) e. ( `' ( W ` B ) " { ( F ` B ) } ) <-> ( F ` B ) ( W ` B ) ( F ` B ) ) |
38 |
34 37
|
bitri |
|- ( ( F ` B ) e. C <-> ( F ` B ) ( W ` B ) ( F ` B ) ) |
39 |
33 38
|
sylnibr |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> -. ( F ` B ) e. C ) |
40 |
26 27 39
|
ssnelpssd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> C C. B ) |
41 |
|
sneq |
|- ( y = ( F ` B ) -> { y } = { ( F ` B ) } ) |
42 |
41
|
imaeq2d |
|- ( y = ( F ` B ) -> ( `' ( W ` B ) " { y } ) = ( `' ( W ` B ) " { ( F ` B ) } ) ) |
43 |
42 3
|
eqtr4di |
|- ( y = ( F ` B ) -> ( `' ( W ` B ) " { y } ) = C ) |
44 |
43
|
fveq2d |
|- ( y = ( F ` B ) -> ( F ` ( `' ( W ` B ) " { y } ) ) = ( F ` C ) ) |
45 |
|
id |
|- ( y = ( F ` B ) -> y = ( F ` B ) ) |
46 |
44 45
|
eqeq12d |
|- ( y = ( F ` B ) -> ( ( F ` ( `' ( W ` B ) " { y } ) ) = y <-> ( F ` C ) = ( F ` B ) ) ) |
47 |
28
|
simprd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) |
48 |
46 47 27
|
rspcdva |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` C ) = ( F ` B ) ) |
49 |
48
|
eqcomd |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( F ` B ) = ( F ` C ) ) |
50 |
18 40 49
|
3jca |
|- ( ( A e. V /\ F : D --> A /\ ( ~P A i^i dom card ) C_ D ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |