Step |
Hyp |
Ref |
Expression |
1 |
|
canth4.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
2 |
|
canth4.2 |
|- B = U. dom W |
3 |
|
canth4.3 |
|- C = ( `' ( W ` B ) " { ( F ` B ) } ) |
4 |
|
f1f |
|- ( F : ( ~P A i^i dom card ) -1-1-> A -> F : ( ~P A i^i dom card ) --> A ) |
5 |
|
ssid |
|- ( ~P A i^i dom card ) C_ ( ~P A i^i dom card ) |
6 |
1 2 3
|
canth4 |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) --> A /\ ( ~P A i^i dom card ) C_ ( ~P A i^i dom card ) ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
7 |
5 6
|
mp3an3 |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) --> A ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
8 |
4 7
|
sylan2 |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B C_ A /\ C C. B /\ ( F ` B ) = ( F ` C ) ) ) |
9 |
8
|
simp3d |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( F ` B ) = ( F ` C ) ) |
10 |
|
simpr |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> F : ( ~P A i^i dom card ) -1-1-> A ) |
11 |
8
|
simp1d |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B C_ A ) |
12 |
|
elpw2g |
|- ( A e. V -> ( B e. ~P A <-> B C_ A ) ) |
13 |
12
|
adantr |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B e. ~P A <-> B C_ A ) ) |
14 |
11 13
|
mpbird |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. ~P A ) |
15 |
|
eqid |
|- B = B |
16 |
|
eqid |
|- ( W ` B ) = ( W ` B ) |
17 |
15 16
|
pm3.2i |
|- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
18 |
|
simpl |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> A e. V ) |
19 |
10 4
|
syl |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> F : ( ~P A i^i dom card ) --> A ) |
20 |
19
|
ffvelrnda |
|- ( ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) /\ x e. ( ~P A i^i dom card ) ) -> ( F ` x ) e. A ) |
21 |
1 18 20 2
|
fpwwe |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( B W ( W ` B ) /\ ( F ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
22 |
17 21
|
mpbiri |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B W ( W ` B ) /\ ( F ` B ) e. B ) ) |
23 |
22
|
simpld |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B W ( W ` B ) ) |
24 |
1 18
|
fpwwelem |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
25 |
23 24
|
mpbid |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( F ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
26 |
25
|
simprld |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( W ` B ) We B ) |
27 |
|
fvex |
|- ( W ` B ) e. _V |
28 |
|
weeq1 |
|- ( r = ( W ` B ) -> ( r We B <-> ( W ` B ) We B ) ) |
29 |
27 28
|
spcev |
|- ( ( W ` B ) We B -> E. r r We B ) |
30 |
26 29
|
syl |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> E. r r We B ) |
31 |
|
ween |
|- ( B e. dom card <-> E. r r We B ) |
32 |
30 31
|
sylibr |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. dom card ) |
33 |
14 32
|
elind |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B e. ( ~P A i^i dom card ) ) |
34 |
8
|
simp2d |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C. B ) |
35 |
34
|
pssssd |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C_ B ) |
36 |
35 11
|
sstrd |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C C_ A ) |
37 |
|
elpw2g |
|- ( A e. V -> ( C e. ~P A <-> C C_ A ) ) |
38 |
37
|
adantr |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( C e. ~P A <-> C C_ A ) ) |
39 |
36 38
|
mpbird |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. ~P A ) |
40 |
|
ssnum |
|- ( ( B e. dom card /\ C C_ B ) -> C e. dom card ) |
41 |
32 35 40
|
syl2anc |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. dom card ) |
42 |
39 41
|
elind |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C e. ( ~P A i^i dom card ) ) |
43 |
|
f1fveq |
|- ( ( F : ( ~P A i^i dom card ) -1-1-> A /\ ( B e. ( ~P A i^i dom card ) /\ C e. ( ~P A i^i dom card ) ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
44 |
10 33 42 43
|
syl12anc |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
45 |
9 44
|
mpbid |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B = C ) |
46 |
34
|
pssned |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> C =/= B ) |
47 |
46
|
necomd |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> B =/= C ) |
48 |
47
|
neneqd |
|- ( ( A e. V /\ F : ( ~P A i^i dom card ) -1-1-> A ) -> -. B = C ) |
49 |
45 48
|
pm2.65da |
|- ( A e. V -> -. F : ( ~P A i^i dom card ) -1-1-> A ) |