| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1sdom2 |  |-  1o ~< 2o | 
						
							| 2 |  | sdomdom |  |-  ( 1o ~< 2o -> 1o ~<_ 2o ) | 
						
							| 3 | 1 2 | ax-mp |  |-  1o ~<_ 2o | 
						
							| 4 |  | relsdom |  |-  Rel ~< | 
						
							| 5 | 4 | brrelex2i |  |-  ( 1o ~< A -> A e. _V ) | 
						
							| 6 |  | djudom2 |  |-  ( ( 1o ~<_ 2o /\ A e. _V ) -> ( A |_| 1o ) ~<_ ( A |_| 2o ) ) | 
						
							| 7 | 3 5 6 | sylancr |  |-  ( 1o ~< A -> ( A |_| 1o ) ~<_ ( A |_| 2o ) ) | 
						
							| 8 |  | canthp1lem1 |  |-  ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) | 
						
							| 9 |  | domtr |  |-  ( ( ( A |_| 1o ) ~<_ ( A |_| 2o ) /\ ( A |_| 2o ) ~<_ ~P A ) -> ( A |_| 1o ) ~<_ ~P A ) | 
						
							| 10 | 7 8 9 | syl2anc |  |-  ( 1o ~< A -> ( A |_| 1o ) ~<_ ~P A ) | 
						
							| 11 |  | fal |  |-  -. F. | 
						
							| 12 |  | ensym |  |-  ( ( A |_| 1o ) ~~ ~P A -> ~P A ~~ ( A |_| 1o ) ) | 
						
							| 13 |  | bren |  |-  ( ~P A ~~ ( A |_| 1o ) <-> E. f f : ~P A -1-1-onto-> ( A |_| 1o ) ) | 
						
							| 14 | 12 13 | sylib |  |-  ( ( A |_| 1o ) ~~ ~P A -> E. f f : ~P A -1-1-onto-> ( A |_| 1o ) ) | 
						
							| 15 |  | f1of |  |-  ( f : ~P A -1-1-onto-> ( A |_| 1o ) -> f : ~P A --> ( A |_| 1o ) ) | 
						
							| 16 |  | pwidg |  |-  ( A e. _V -> A e. ~P A ) | 
						
							| 17 | 5 16 | syl |  |-  ( 1o ~< A -> A e. ~P A ) | 
						
							| 18 |  | ffvelcdm |  |-  ( ( f : ~P A --> ( A |_| 1o ) /\ A e. ~P A ) -> ( f ` A ) e. ( A |_| 1o ) ) | 
						
							| 19 | 15 17 18 | syl2anr |  |-  ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ( f ` A ) e. ( A |_| 1o ) ) | 
						
							| 20 |  | dju1dif |  |-  ( ( A e. _V /\ ( f ` A ) e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A ) | 
						
							| 21 | 5 19 20 | syl2an2r |  |-  ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A ) | 
						
							| 22 |  | bren |  |-  ( ( ( A |_| 1o ) \ { ( f ` A ) } ) ~~ A <-> E. g g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) | 
						
							| 23 | 21 22 | sylib |  |-  ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> E. g g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) | 
						
							| 24 |  | simpll |  |-  ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> 1o ~< A ) | 
						
							| 25 |  | simplr |  |-  ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> f : ~P A -1-1-onto-> ( A |_| 1o ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) | 
						
							| 27 |  | eqeq1 |  |-  ( w = x -> ( w = A <-> x = A ) ) | 
						
							| 28 |  | id |  |-  ( w = x -> w = x ) | 
						
							| 29 | 27 28 | ifbieq2d |  |-  ( w = x -> if ( w = A , (/) , w ) = if ( x = A , (/) , x ) ) | 
						
							| 30 | 29 | cbvmptv |  |-  ( w e. ~P A |-> if ( w = A , (/) , w ) ) = ( x e. ~P A |-> if ( x = A , (/) , x ) ) | 
						
							| 31 | 30 | coeq2i |  |-  ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) = ( ( g o. f ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) | 
						
							| 32 |  | eqid |  |-  { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } | 
						
							| 33 | 32 | fpwwecbv |  |-  { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' r " { y } ) ) = y ) ) } | 
						
							| 34 |  | eqid |  |-  U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } = U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( ( ( g o. f ) o. ( w e. ~P A |-> if ( w = A , (/) , w ) ) ) ` ( `' s " { z } ) ) = z ) ) } | 
						
							| 35 | 24 25 26 31 33 34 | canthp1lem2 |  |-  -. ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) | 
						
							| 36 | 35 | pm2.21i |  |-  ( ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) /\ g : ( ( A |_| 1o ) \ { ( f ` A ) } ) -1-1-onto-> A ) -> F. ) | 
						
							| 37 | 23 36 | exlimddv |  |-  ( ( 1o ~< A /\ f : ~P A -1-1-onto-> ( A |_| 1o ) ) -> F. ) | 
						
							| 38 | 37 | ex |  |-  ( 1o ~< A -> ( f : ~P A -1-1-onto-> ( A |_| 1o ) -> F. ) ) | 
						
							| 39 | 38 | exlimdv |  |-  ( 1o ~< A -> ( E. f f : ~P A -1-1-onto-> ( A |_| 1o ) -> F. ) ) | 
						
							| 40 | 14 39 | syl5 |  |-  ( 1o ~< A -> ( ( A |_| 1o ) ~~ ~P A -> F. ) ) | 
						
							| 41 | 11 40 | mtoi |  |-  ( 1o ~< A -> -. ( A |_| 1o ) ~~ ~P A ) | 
						
							| 42 |  | brsdom |  |-  ( ( A |_| 1o ) ~< ~P A <-> ( ( A |_| 1o ) ~<_ ~P A /\ -. ( A |_| 1o ) ~~ ~P A ) ) | 
						
							| 43 | 10 41 42 | sylanbrc |  |-  ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) |