| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1sdom2 |
|- 1o ~< 2o |
| 2 |
|
djuxpdom |
|- ( ( 1o ~< A /\ 1o ~< 2o ) -> ( A |_| 2o ) ~<_ ( A X. 2o ) ) |
| 3 |
1 2
|
mpan2 |
|- ( 1o ~< A -> ( A |_| 2o ) ~<_ ( A X. 2o ) ) |
| 4 |
|
sdom0 |
|- -. 1o ~< (/) |
| 5 |
|
breq2 |
|- ( A = (/) -> ( 1o ~< A <-> 1o ~< (/) ) ) |
| 6 |
4 5
|
mtbiri |
|- ( A = (/) -> -. 1o ~< A ) |
| 7 |
6
|
con2i |
|- ( 1o ~< A -> -. A = (/) ) |
| 8 |
|
neq0 |
|- ( -. A = (/) <-> E. x x e. A ) |
| 9 |
7 8
|
sylib |
|- ( 1o ~< A -> E. x x e. A ) |
| 10 |
|
relsdom |
|- Rel ~< |
| 11 |
10
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
| 12 |
11
|
adantr |
|- ( ( 1o ~< A /\ x e. A ) -> A e. _V ) |
| 13 |
|
enrefg |
|- ( A e. _V -> A ~~ A ) |
| 14 |
12 13
|
syl |
|- ( ( 1o ~< A /\ x e. A ) -> A ~~ A ) |
| 15 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
| 16 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
| 17 |
15 16
|
eqtr4i |
|- 2o = ~P { (/) } |
| 18 |
|
0ex |
|- (/) e. _V |
| 19 |
|
vex |
|- x e. _V |
| 20 |
|
en2sn |
|- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
| 21 |
18 19 20
|
mp2an |
|- { (/) } ~~ { x } |
| 22 |
|
pwen |
|- ( { (/) } ~~ { x } -> ~P { (/) } ~~ ~P { x } ) |
| 23 |
21 22
|
ax-mp |
|- ~P { (/) } ~~ ~P { x } |
| 24 |
17 23
|
eqbrtri |
|- 2o ~~ ~P { x } |
| 25 |
|
xpen |
|- ( ( A ~~ A /\ 2o ~~ ~P { x } ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) ) |
| 26 |
14 24 25
|
sylancl |
|- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) ) |
| 27 |
|
vsnex |
|- { x } e. _V |
| 28 |
27
|
pwex |
|- ~P { x } e. _V |
| 29 |
|
uncom |
|- ( ( A \ { x } ) u. { x } ) = ( { x } u. ( A \ { x } ) ) |
| 30 |
|
simpr |
|- ( ( 1o ~< A /\ x e. A ) -> x e. A ) |
| 31 |
30
|
snssd |
|- ( ( 1o ~< A /\ x e. A ) -> { x } C_ A ) |
| 32 |
|
undif |
|- ( { x } C_ A <-> ( { x } u. ( A \ { x } ) ) = A ) |
| 33 |
31 32
|
sylib |
|- ( ( 1o ~< A /\ x e. A ) -> ( { x } u. ( A \ { x } ) ) = A ) |
| 34 |
29 33
|
eqtrid |
|- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) = A ) |
| 35 |
12
|
difexd |
|- ( ( 1o ~< A /\ x e. A ) -> ( A \ { x } ) e. _V ) |
| 36 |
|
canth2g |
|- ( ( A \ { x } ) e. _V -> ( A \ { x } ) ~< ~P ( A \ { x } ) ) |
| 37 |
|
domunsn |
|- ( ( A \ { x } ) ~< ~P ( A \ { x } ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) ) |
| 38 |
35 36 37
|
3syl |
|- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) ) |
| 39 |
34 38
|
eqbrtrrd |
|- ( ( 1o ~< A /\ x e. A ) -> A ~<_ ~P ( A \ { x } ) ) |
| 40 |
|
xpdom1g |
|- ( ( ~P { x } e. _V /\ A ~<_ ~P ( A \ { x } ) ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 41 |
28 39 40
|
sylancr |
|- ( ( 1o ~< A /\ x e. A ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 42 |
|
endomtr |
|- ( ( ( A X. 2o ) ~~ ( A X. ~P { x } ) /\ ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 43 |
26 41 42
|
syl2anc |
|- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 44 |
|
pwdjuen |
|- ( ( ( A \ { x } ) e. _V /\ { x } e. _V ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 45 |
35 27 44
|
sylancl |
|- ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 46 |
45
|
ensymd |
|- ( ( 1o ~< A /\ x e. A ) -> ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) ) |
| 47 |
|
domentr |
|- ( ( ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) /\ ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) ) |
| 48 |
43 46 47
|
syl2anc |
|- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) ) |
| 49 |
27
|
a1i |
|- ( ( 1o ~< A /\ x e. A ) -> { x } e. _V ) |
| 50 |
|
disjdifr |
|- ( ( A \ { x } ) i^i { x } ) = (/) |
| 51 |
50
|
a1i |
|- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) i^i { x } ) = (/) ) |
| 52 |
|
endjudisj |
|- ( ( ( A \ { x } ) e. _V /\ { x } e. _V /\ ( ( A \ { x } ) i^i { x } ) = (/) ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) ) |
| 53 |
35 49 51 52
|
syl3anc |
|- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) ) |
| 54 |
53 34
|
breqtrd |
|- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ A ) |
| 55 |
|
pwen |
|- ( ( ( A \ { x } ) |_| { x } ) ~~ A -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) |
| 56 |
54 55
|
syl |
|- ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) |
| 57 |
|
domentr |
|- ( ( ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) /\ ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) -> ( A X. 2o ) ~<_ ~P A ) |
| 58 |
48 56 57
|
syl2anc |
|- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P A ) |
| 59 |
9 58
|
exlimddv |
|- ( 1o ~< A -> ( A X. 2o ) ~<_ ~P A ) |
| 60 |
|
domtr |
|- ( ( ( A |_| 2o ) ~<_ ( A X. 2o ) /\ ( A X. 2o ) ~<_ ~P A ) -> ( A |_| 2o ) ~<_ ~P A ) |
| 61 |
3 59 60
|
syl2anc |
|- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |