Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
|- (/) e. ~P A |
2 |
|
ne0i |
|- ( (/) e. ~P A -> ~P A =/= (/) ) |
3 |
1 2
|
mp1i |
|- ( ~P A ~<_* A -> ~P A =/= (/) ) |
4 |
|
brwdomn0 |
|- ( ~P A =/= (/) -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) |
5 |
3 4
|
syl |
|- ( ~P A ~<_* A -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) |
6 |
5
|
ibi |
|- ( ~P A ~<_* A -> E. f f : A -onto-> ~P A ) |
7 |
|
relwdom |
|- Rel ~<_* |
8 |
7
|
brrelex2i |
|- ( ~P A ~<_* A -> A e. _V ) |
9 |
|
foeq2 |
|- ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P x ) ) |
10 |
|
pweq |
|- ( x = A -> ~P x = ~P A ) |
11 |
|
foeq3 |
|- ( ~P x = ~P A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
12 |
10 11
|
syl |
|- ( x = A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
13 |
9 12
|
bitrd |
|- ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P A ) ) |
14 |
13
|
notbid |
|- ( x = A -> ( -. f : x -onto-> ~P x <-> -. f : A -onto-> ~P A ) ) |
15 |
|
vex |
|- x e. _V |
16 |
15
|
canth |
|- -. f : x -onto-> ~P x |
17 |
14 16
|
vtoclg |
|- ( A e. _V -> -. f : A -onto-> ~P A ) |
18 |
8 17
|
syl |
|- ( ~P A ~<_* A -> -. f : A -onto-> ~P A ) |
19 |
18
|
nexdv |
|- ( ~P A ~<_* A -> -. E. f f : A -onto-> ~P A ) |
20 |
6 19
|
pm2.65i |
|- -. ~P A ~<_* A |