| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elpw |  |-  (/) e. ~P A | 
						
							| 2 |  | ne0i |  |-  ( (/) e. ~P A -> ~P A =/= (/) ) | 
						
							| 3 | 1 2 | mp1i |  |-  ( ~P A ~<_* A -> ~P A =/= (/) ) | 
						
							| 4 |  | brwdomn0 |  |-  ( ~P A =/= (/) -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ~P A ~<_* A -> ( ~P A ~<_* A <-> E. f f : A -onto-> ~P A ) ) | 
						
							| 6 | 5 | ibi |  |-  ( ~P A ~<_* A -> E. f f : A -onto-> ~P A ) | 
						
							| 7 |  | relwdom |  |-  Rel ~<_* | 
						
							| 8 | 7 | brrelex2i |  |-  ( ~P A ~<_* A -> A e. _V ) | 
						
							| 9 |  | foeq2 |  |-  ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P x ) ) | 
						
							| 10 |  | pweq |  |-  ( x = A -> ~P x = ~P A ) | 
						
							| 11 |  | foeq3 |  |-  ( ~P x = ~P A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( x = A -> ( f : A -onto-> ~P x <-> f : A -onto-> ~P A ) ) | 
						
							| 13 | 9 12 | bitrd |  |-  ( x = A -> ( f : x -onto-> ~P x <-> f : A -onto-> ~P A ) ) | 
						
							| 14 | 13 | notbid |  |-  ( x = A -> ( -. f : x -onto-> ~P x <-> -. f : A -onto-> ~P A ) ) | 
						
							| 15 |  | vex |  |-  x e. _V | 
						
							| 16 | 15 | canth |  |-  -. f : x -onto-> ~P x | 
						
							| 17 | 14 16 | vtoclg |  |-  ( A e. _V -> -. f : A -onto-> ~P A ) | 
						
							| 18 | 8 17 | syl |  |-  ( ~P A ~<_* A -> -. f : A -onto-> ~P A ) | 
						
							| 19 | 18 | nexdv |  |-  ( ~P A ~<_* A -> -. E. f f : A -onto-> ~P A ) | 
						
							| 20 | 6 19 | pm2.65i |  |-  -. ~P A ~<_* A |