Step |
Hyp |
Ref |
Expression |
1 |
|
canthwe.1 |
|- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
2 |
|
simp1 |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x C_ A ) |
3 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
4 |
2 3
|
sylibr |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x e. ~P A ) |
5 |
|
simp2 |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r C_ ( x X. x ) ) |
6 |
|
xpss12 |
|- ( ( x C_ A /\ x C_ A ) -> ( x X. x ) C_ ( A X. A ) ) |
7 |
2 2 6
|
syl2anc |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x X. x ) C_ ( A X. A ) ) |
8 |
5 7
|
sstrd |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r C_ ( A X. A ) ) |
9 |
|
velpw |
|- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
10 |
8 9
|
sylibr |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r e. ~P ( A X. A ) ) |
11 |
4 10
|
jca |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x e. ~P A /\ r e. ~P ( A X. A ) ) ) |
12 |
11
|
ssopab2i |
|- { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } C_ { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
13 |
|
df-xp |
|- ( ~P A X. ~P ( A X. A ) ) = { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
14 |
12 1 13
|
3sstr4i |
|- O C_ ( ~P A X. ~P ( A X. A ) ) |
15 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
16 |
|
sqxpexg |
|- ( A e. V -> ( A X. A ) e. _V ) |
17 |
16
|
pwexd |
|- ( A e. V -> ~P ( A X. A ) e. _V ) |
18 |
15 17
|
xpexd |
|- ( A e. V -> ( ~P A X. ~P ( A X. A ) ) e. _V ) |
19 |
|
ssexg |
|- ( ( O C_ ( ~P A X. ~P ( A X. A ) ) /\ ( ~P A X. ~P ( A X. A ) ) e. _V ) -> O e. _V ) |
20 |
14 18 19
|
sylancr |
|- ( A e. V -> O e. _V ) |
21 |
|
simpr |
|- ( ( A e. V /\ u e. A ) -> u e. A ) |
22 |
21
|
snssd |
|- ( ( A e. V /\ u e. A ) -> { u } C_ A ) |
23 |
|
0ss |
|- (/) C_ ( { u } X. { u } ) |
24 |
23
|
a1i |
|- ( ( A e. V /\ u e. A ) -> (/) C_ ( { u } X. { u } ) ) |
25 |
|
rel0 |
|- Rel (/) |
26 |
|
br0 |
|- -. u (/) u |
27 |
|
wesn |
|- ( Rel (/) -> ( (/) We { u } <-> -. u (/) u ) ) |
28 |
26 27
|
mpbiri |
|- ( Rel (/) -> (/) We { u } ) |
29 |
25 28
|
mp1i |
|- ( ( A e. V /\ u e. A ) -> (/) We { u } ) |
30 |
|
snex |
|- { u } e. _V |
31 |
|
0ex |
|- (/) e. _V |
32 |
|
simpl |
|- ( ( x = { u } /\ r = (/) ) -> x = { u } ) |
33 |
32
|
sseq1d |
|- ( ( x = { u } /\ r = (/) ) -> ( x C_ A <-> { u } C_ A ) ) |
34 |
|
simpr |
|- ( ( x = { u } /\ r = (/) ) -> r = (/) ) |
35 |
32
|
sqxpeqd |
|- ( ( x = { u } /\ r = (/) ) -> ( x X. x ) = ( { u } X. { u } ) ) |
36 |
34 35
|
sseq12d |
|- ( ( x = { u } /\ r = (/) ) -> ( r C_ ( x X. x ) <-> (/) C_ ( { u } X. { u } ) ) ) |
37 |
|
weeq2 |
|- ( x = { u } -> ( r We x <-> r We { u } ) ) |
38 |
|
weeq1 |
|- ( r = (/) -> ( r We { u } <-> (/) We { u } ) ) |
39 |
37 38
|
sylan9bb |
|- ( ( x = { u } /\ r = (/) ) -> ( r We x <-> (/) We { u } ) ) |
40 |
33 36 39
|
3anbi123d |
|- ( ( x = { u } /\ r = (/) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( { u } C_ A /\ (/) C_ ( { u } X. { u } ) /\ (/) We { u } ) ) ) |
41 |
30 31 40
|
opelopaba |
|- ( <. { u } , (/) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( { u } C_ A /\ (/) C_ ( { u } X. { u } ) /\ (/) We { u } ) ) |
42 |
22 24 29 41
|
syl3anbrc |
|- ( ( A e. V /\ u e. A ) -> <. { u } , (/) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
43 |
42 1
|
eleqtrrdi |
|- ( ( A e. V /\ u e. A ) -> <. { u } , (/) >. e. O ) |
44 |
43
|
ex |
|- ( A e. V -> ( u e. A -> <. { u } , (/) >. e. O ) ) |
45 |
|
eqid |
|- (/) = (/) |
46 |
|
snex |
|- { v } e. _V |
47 |
46 31
|
opth2 |
|- ( <. { u } , (/) >. = <. { v } , (/) >. <-> ( { u } = { v } /\ (/) = (/) ) ) |
48 |
45 47
|
mpbiran2 |
|- ( <. { u } , (/) >. = <. { v } , (/) >. <-> { u } = { v } ) |
49 |
|
sneqbg |
|- ( u e. _V -> ( { u } = { v } <-> u = v ) ) |
50 |
49
|
elv |
|- ( { u } = { v } <-> u = v ) |
51 |
48 50
|
bitri |
|- ( <. { u } , (/) >. = <. { v } , (/) >. <-> u = v ) |
52 |
51
|
2a1i |
|- ( A e. V -> ( ( u e. A /\ v e. A ) -> ( <. { u } , (/) >. = <. { v } , (/) >. <-> u = v ) ) ) |
53 |
44 52
|
dom2d |
|- ( A e. V -> ( O e. _V -> A ~<_ O ) ) |
54 |
20 53
|
mpd |
|- ( A e. V -> A ~<_ O ) |
55 |
|
eqid |
|- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } |
56 |
55
|
fpwwe2cbv |
|- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / w ]. ( w f ( r i^i ( w X. w ) ) ) = y ) ) } |
57 |
|
eqid |
|- U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } |
58 |
|
eqid |
|- ( `' ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) " { ( U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } f ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) ) } ) = ( `' ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) " { ( U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } f ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) ) } ) |
59 |
1 56 57 58
|
canthwelem |
|- ( A e. V -> -. f : O -1-1-> A ) |
60 |
|
f1of1 |
|- ( f : O -1-1-onto-> A -> f : O -1-1-> A ) |
61 |
59 60
|
nsyl |
|- ( A e. V -> -. f : O -1-1-onto-> A ) |
62 |
61
|
nexdv |
|- ( A e. V -> -. E. f f : O -1-1-onto-> A ) |
63 |
|
ensym |
|- ( A ~~ O -> O ~~ A ) |
64 |
|
bren |
|- ( O ~~ A <-> E. f f : O -1-1-onto-> A ) |
65 |
63 64
|
sylib |
|- ( A ~~ O -> E. f f : O -1-1-onto-> A ) |
66 |
62 65
|
nsyl |
|- ( A e. V -> -. A ~~ O ) |
67 |
|
brsdom |
|- ( A ~< O <-> ( A ~<_ O /\ -. A ~~ O ) ) |
68 |
54 66 67
|
sylanbrc |
|- ( A e. V -> A ~< O ) |