Step |
Hyp |
Ref |
Expression |
1 |
|
canthwe.1 |
|- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
2 |
|
canthwe.2 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
3 |
|
canthwe.3 |
|- B = U. dom W |
4 |
|
canthwe.4 |
|- C = ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) |
5 |
|
eqid |
|- B = B |
6 |
|
eqid |
|- ( W ` B ) = ( W ` B ) |
7 |
5 6
|
pm3.2i |
|- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
8 |
|
simpl |
|- ( ( A e. V /\ F : O -1-1-> A ) -> A e. V ) |
9 |
|
df-ov |
|- ( x F r ) = ( F ` <. x , r >. ) |
10 |
|
f1f |
|- ( F : O -1-1-> A -> F : O --> A ) |
11 |
10
|
ad2antlr |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> F : O --> A ) |
12 |
|
simpr |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) |
13 |
|
opabidw |
|- ( <. x , r >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) |
14 |
12 13
|
sylibr |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> <. x , r >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
15 |
14 1
|
eleqtrrdi |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> <. x , r >. e. O ) |
16 |
11 15
|
ffvelrnd |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( F ` <. x , r >. ) e. A ) |
17 |
9 16
|
eqeltrid |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
18 |
2 8 17 3
|
fpwwe2 |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B W ( W ` B ) /\ ( B F ( W ` B ) ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
19 |
7 18
|
mpbiri |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B W ( W ` B ) /\ ( B F ( W ` B ) ) e. B ) ) |
20 |
19
|
simprd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. B ) |
21 |
4 4
|
xpeq12i |
|- ( C X. C ) = ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) |
22 |
21
|
ineq2i |
|- ( ( W ` B ) i^i ( C X. C ) ) = ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) |
23 |
4 22
|
oveq12i |
|- ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) |
24 |
19
|
simpld |
|- ( ( A e. V /\ F : O -1-1-> A ) -> B W ( W ` B ) ) |
25 |
2 8 24
|
fpwwe2lem3 |
|- ( ( ( A e. V /\ F : O -1-1-> A ) /\ ( B F ( W ` B ) ) e. B ) -> ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) = ( B F ( W ` B ) ) ) |
26 |
20 25
|
mpdan |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) F ( ( W ` B ) i^i ( ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) X. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) ) ) = ( B F ( W ` B ) ) ) |
27 |
23 26
|
eqtrid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( B F ( W ` B ) ) ) |
28 |
|
df-ov |
|- ( C F ( ( W ` B ) i^i ( C X. C ) ) ) = ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) |
29 |
|
df-ov |
|- ( B F ( W ` B ) ) = ( F ` <. B , ( W ` B ) >. ) |
30 |
27 28 29
|
3eqtr3g |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) ) |
31 |
|
simpr |
|- ( ( A e. V /\ F : O -1-1-> A ) -> F : O -1-1-> A ) |
32 |
|
cnvimass |
|- ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) C_ dom ( W ` B ) |
33 |
2 8
|
fpwwe2lem2 |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) ) ) |
34 |
24 33
|
mpbid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) ) |
35 |
34
|
simpld |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) ) |
36 |
35
|
simprd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) C_ ( B X. B ) ) |
37 |
|
dmss |
|- ( ( W ` B ) C_ ( B X. B ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
38 |
36 37
|
syl |
|- ( ( A e. V /\ F : O -1-1-> A ) -> dom ( W ` B ) C_ dom ( B X. B ) ) |
39 |
|
dmxpss |
|- dom ( B X. B ) C_ B |
40 |
38 39
|
sstrdi |
|- ( ( A e. V /\ F : O -1-1-> A ) -> dom ( W ` B ) C_ B ) |
41 |
32 40
|
sstrid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) C_ B ) |
42 |
4 41
|
eqsstrid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> C C_ B ) |
43 |
35
|
simpld |
|- ( ( A e. V /\ F : O -1-1-> A ) -> B C_ A ) |
44 |
42 43
|
sstrd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> C C_ A ) |
45 |
|
inss2 |
|- ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) |
46 |
45
|
a1i |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) ) |
47 |
34
|
simprd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) We B /\ A. y e. B [. ( `' ( W ` B ) " { y } ) / u ]. ( u F ( ( W ` B ) i^i ( u X. u ) ) ) = y ) ) |
48 |
47
|
simpld |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) We B ) |
49 |
|
wess |
|- ( C C_ B -> ( ( W ` B ) We B -> ( W ` B ) We C ) ) |
50 |
42 48 49
|
sylc |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) We C ) |
51 |
|
weinxp |
|- ( ( W ` B ) We C <-> ( ( W ` B ) i^i ( C X. C ) ) We C ) |
52 |
50 51
|
sylib |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( W ` B ) i^i ( C X. C ) ) We C ) |
53 |
|
fvex |
|- ( W ` B ) e. _V |
54 |
53
|
cnvex |
|- `' ( W ` B ) e. _V |
55 |
54
|
imaex |
|- ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) e. _V |
56 |
4 55
|
eqeltri |
|- C e. _V |
57 |
53
|
inex1 |
|- ( ( W ` B ) i^i ( C X. C ) ) e. _V |
58 |
|
simpl |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> x = C ) |
59 |
58
|
sseq1d |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( x C_ A <-> C C_ A ) ) |
60 |
|
simpr |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> r = ( ( W ` B ) i^i ( C X. C ) ) ) |
61 |
58
|
sqxpeqd |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( x X. x ) = ( C X. C ) ) |
62 |
60 61
|
sseq12d |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( r C_ ( x X. x ) <-> ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) ) ) |
63 |
|
weeq2 |
|- ( x = C -> ( r We x <-> r We C ) ) |
64 |
|
weeq1 |
|- ( r = ( ( W ` B ) i^i ( C X. C ) ) -> ( r We C <-> ( ( W ` B ) i^i ( C X. C ) ) We C ) ) |
65 |
63 64
|
sylan9bb |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( r We x <-> ( ( W ` B ) i^i ( C X. C ) ) We C ) ) |
66 |
59 62 65
|
3anbi123d |
|- ( ( x = C /\ r = ( ( W ` B ) i^i ( C X. C ) ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( C C_ A /\ ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) /\ ( ( W ` B ) i^i ( C X. C ) ) We C ) ) ) |
67 |
56 57 66
|
opelopaba |
|- ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( C C_ A /\ ( ( W ` B ) i^i ( C X. C ) ) C_ ( C X. C ) /\ ( ( W ` B ) i^i ( C X. C ) ) We C ) ) |
68 |
44 46 52 67
|
syl3anbrc |
|- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
69 |
68 1
|
eleqtrrdi |
|- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. O ) |
70 |
8 43
|
ssexd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> B e. _V ) |
71 |
53
|
a1i |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) e. _V ) |
72 |
|
simpl |
|- ( ( x = B /\ r = ( W ` B ) ) -> x = B ) |
73 |
72
|
sseq1d |
|- ( ( x = B /\ r = ( W ` B ) ) -> ( x C_ A <-> B C_ A ) ) |
74 |
|
simpr |
|- ( ( x = B /\ r = ( W ` B ) ) -> r = ( W ` B ) ) |
75 |
72
|
sqxpeqd |
|- ( ( x = B /\ r = ( W ` B ) ) -> ( x X. x ) = ( B X. B ) ) |
76 |
74 75
|
sseq12d |
|- ( ( x = B /\ r = ( W ` B ) ) -> ( r C_ ( x X. x ) <-> ( W ` B ) C_ ( B X. B ) ) ) |
77 |
|
weeq2 |
|- ( x = B -> ( r We x <-> r We B ) ) |
78 |
|
weeq1 |
|- ( r = ( W ` B ) -> ( r We B <-> ( W ` B ) We B ) ) |
79 |
77 78
|
sylan9bb |
|- ( ( x = B /\ r = ( W ` B ) ) -> ( r We x <-> ( W ` B ) We B ) ) |
80 |
73 76 79
|
3anbi123d |
|- ( ( x = B /\ r = ( W ` B ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
81 |
80
|
opelopabga |
|- ( ( B e. _V /\ ( W ` B ) e. _V ) -> ( <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
82 |
70 71 81
|
syl2anc |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( B C_ A /\ ( W ` B ) C_ ( B X. B ) /\ ( W ` B ) We B ) ) ) |
83 |
43 36 48 82
|
mpbir3and |
|- ( ( A e. V /\ F : O -1-1-> A ) -> <. B , ( W ` B ) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
84 |
83 1
|
eleqtrrdi |
|- ( ( A e. V /\ F : O -1-1-> A ) -> <. B , ( W ` B ) >. e. O ) |
85 |
|
f1fveq |
|- ( ( F : O -1-1-> A /\ ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. e. O /\ <. B , ( W ` B ) >. e. O ) ) -> ( ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) <-> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) ) |
86 |
31 69 84 85
|
syl12anc |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( F ` <. C , ( ( W ` B ) i^i ( C X. C ) ) >. ) = ( F ` <. B , ( W ` B ) >. ) <-> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) ) |
87 |
30 86
|
mpbid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. ) |
88 |
56 57
|
opth1 |
|- ( <. C , ( ( W ` B ) i^i ( C X. C ) ) >. = <. B , ( W ` B ) >. -> C = B ) |
89 |
87 88
|
syl |
|- ( ( A e. V /\ F : O -1-1-> A ) -> C = B ) |
90 |
20 89
|
eleqtrrd |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. C ) |
91 |
90 4
|
eleqtrdi |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) ) |
92 |
|
ovex |
|- ( B F ( W ` B ) ) e. _V |
93 |
92
|
eliniseg |
|- ( ( B F ( W ` B ) ) e. B -> ( ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) <-> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) ) |
94 |
20 93
|
syl |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( ( B F ( W ` B ) ) e. ( `' ( W ` B ) " { ( B F ( W ` B ) ) } ) <-> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) ) |
95 |
91 94
|
mpbid |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
96 |
|
weso |
|- ( ( W ` B ) We B -> ( W ` B ) Or B ) |
97 |
48 96
|
syl |
|- ( ( A e. V /\ F : O -1-1-> A ) -> ( W ` B ) Or B ) |
98 |
|
sonr |
|- ( ( ( W ` B ) Or B /\ ( B F ( W ` B ) ) e. B ) -> -. ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
99 |
97 20 98
|
syl2anc |
|- ( ( A e. V /\ F : O -1-1-> A ) -> -. ( B F ( W ` B ) ) ( W ` B ) ( B F ( W ` B ) ) ) |
100 |
95 99
|
pm2.65da |
|- ( A e. V -> -. F : O -1-1-> A ) |