| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
cantnf0.a |
|- ( ph -> (/) e. A ) |
| 5 |
|
eqid |
|- OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) |
| 6 |
|
fconst6g |
|- ( (/) e. A -> ( B X. { (/) } ) : B --> A ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( B X. { (/) } ) : B --> A ) |
| 8 |
3 4
|
fczfsuppd |
|- ( ph -> ( B X. { (/) } ) finSupp (/) ) |
| 9 |
1 2 3
|
cantnfs |
|- ( ph -> ( ( B X. { (/) } ) e. S <-> ( ( B X. { (/) } ) : B --> A /\ ( B X. { (/) } ) finSupp (/) ) ) ) |
| 10 |
7 8 9
|
mpbir2and |
|- ( ph -> ( B X. { (/) } ) e. S ) |
| 11 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
| 12 |
1 2 3 5 10 11
|
cantnfval |
|- ( ph -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( B X. { (/) } ) = ( B X. { (/) } ) ) |
| 14 |
|
0ex |
|- (/) e. _V |
| 15 |
|
fnconstg |
|- ( (/) e. _V -> ( B X. { (/) } ) Fn B ) |
| 16 |
14 15
|
mp1i |
|- ( ph -> ( B X. { (/) } ) Fn B ) |
| 17 |
14
|
a1i |
|- ( ph -> (/) e. _V ) |
| 18 |
|
fnsuppeq0 |
|- ( ( ( B X. { (/) } ) Fn B /\ B e. On /\ (/) e. _V ) -> ( ( ( B X. { (/) } ) supp (/) ) = (/) <-> ( B X. { (/) } ) = ( B X. { (/) } ) ) ) |
| 19 |
16 3 17 18
|
syl3anc |
|- ( ph -> ( ( ( B X. { (/) } ) supp (/) ) = (/) <-> ( B X. { (/) } ) = ( B X. { (/) } ) ) ) |
| 20 |
13 19
|
mpbird |
|- ( ph -> ( ( B X. { (/) } ) supp (/) ) = (/) ) |
| 21 |
|
oieq2 |
|- ( ( ( B X. { (/) } ) supp (/) ) = (/) -> OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , (/) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = OrdIso ( _E , (/) ) ) |
| 23 |
22
|
dmeqd |
|- ( ph -> dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = dom OrdIso ( _E , (/) ) ) |
| 24 |
|
we0 |
|- _E We (/) |
| 25 |
|
eqid |
|- OrdIso ( _E , (/) ) = OrdIso ( _E , (/) ) |
| 26 |
25
|
oien |
|- ( ( (/) e. _V /\ _E We (/) ) -> dom OrdIso ( _E , (/) ) ~~ (/) ) |
| 27 |
14 24 26
|
mp2an |
|- dom OrdIso ( _E , (/) ) ~~ (/) |
| 28 |
|
en0 |
|- ( dom OrdIso ( _E , (/) ) ~~ (/) <-> dom OrdIso ( _E , (/) ) = (/) ) |
| 29 |
27 28
|
mpbi |
|- dom OrdIso ( _E , (/) ) = (/) |
| 30 |
23 29
|
eqtrdi |
|- ( ph -> dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) = (/) ) |
| 31 |
30
|
fveq2d |
|- ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) ) |
| 32 |
11
|
seqom0g |
|- ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 33 |
14 32
|
mp1i |
|- ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) .o ( ( B X. { (/) } ) ` ( OrdIso ( _E , ( ( B X. { (/) } ) supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
| 34 |
12 31 33
|
3eqtrd |
|- ( ph -> ( ( A CNF B ) ` ( B X. { (/) } ) ) = (/) ) |