Metamath Proof Explorer


Theorem cantnfcl

Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s
|- S = dom ( A CNF B )
cantnfs.a
|- ( ph -> A e. On )
cantnfs.b
|- ( ph -> B e. On )
cantnfcl.g
|- G = OrdIso ( _E , ( F supp (/) ) )
cantnfcl.f
|- ( ph -> F e. S )
Assertion cantnfcl
|- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) )

Proof

Step Hyp Ref Expression
1 cantnfs.s
 |-  S = dom ( A CNF B )
2 cantnfs.a
 |-  ( ph -> A e. On )
3 cantnfs.b
 |-  ( ph -> B e. On )
4 cantnfcl.g
 |-  G = OrdIso ( _E , ( F supp (/) ) )
5 cantnfcl.f
 |-  ( ph -> F e. S )
6 suppssdm
 |-  ( F supp (/) ) C_ dom F
7 1 2 3 cantnfs
 |-  ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) )
8 5 7 mpbid
 |-  ( ph -> ( F : B --> A /\ F finSupp (/) ) )
9 8 simpld
 |-  ( ph -> F : B --> A )
10 6 9 fssdm
 |-  ( ph -> ( F supp (/) ) C_ B )
11 onss
 |-  ( B e. On -> B C_ On )
12 3 11 syl
 |-  ( ph -> B C_ On )
13 10 12 sstrd
 |-  ( ph -> ( F supp (/) ) C_ On )
14 epweon
 |-  _E We On
15 wess
 |-  ( ( F supp (/) ) C_ On -> ( _E We On -> _E We ( F supp (/) ) ) )
16 13 14 15 mpisyl
 |-  ( ph -> _E We ( F supp (/) ) )
17 ovexd
 |-  ( ph -> ( F supp (/) ) e. _V )
18 4 oion
 |-  ( ( F supp (/) ) e. _V -> dom G e. On )
19 17 18 syl
 |-  ( ph -> dom G e. On )
20 8 simprd
 |-  ( ph -> F finSupp (/) )
21 20 fsuppimpd
 |-  ( ph -> ( F supp (/) ) e. Fin )
22 4 oien
 |-  ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom G ~~ ( F supp (/) ) )
23 17 16 22 syl2anc
 |-  ( ph -> dom G ~~ ( F supp (/) ) )
24 enfii
 |-  ( ( ( F supp (/) ) e. Fin /\ dom G ~~ ( F supp (/) ) ) -> dom G e. Fin )
25 21 23 24 syl2anc
 |-  ( ph -> dom G e. Fin )
26 19 25 elind
 |-  ( ph -> dom G e. ( On i^i Fin ) )
27 onfin2
 |-  _om = ( On i^i Fin )
28 26 27 eleqtrrdi
 |-  ( ph -> dom G e. _om )
29 16 28 jca
 |-  ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) )