| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | fvex |  |-  ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V | 
						
							| 5 | 4 | csbex |  |-  [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ f e. S ) -> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V ) | 
						
							| 7 |  | eqid |  |-  { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } | 
						
							| 8 | 7 2 3 | cantnffval |  |-  ( ph -> ( A CNF B ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) | 
						
							| 9 | 7 2 3 | cantnfdm |  |-  ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 10 | 1 9 | eqtrid |  |-  ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 11 | 10 | mpteq1d |  |-  ( ph -> ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) | 
						
							| 12 | 8 11 | eqtr4d |  |-  ( ph -> ( A CNF B ) = ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) | 
						
							| 13 | 2 | adantr |  |-  ( ( ph /\ x e. S ) -> A e. On ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ x e. S ) -> B e. On ) | 
						
							| 15 |  | eqid |  |-  OrdIso ( _E , ( x supp (/) ) ) = OrdIso ( _E , ( x supp (/) ) ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ x e. S ) -> x e. S ) | 
						
							| 17 |  | eqid |  |-  seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) | 
						
							| 18 | 1 13 14 15 16 17 | cantnfval |  |-  ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) | 
						
							| 20 |  | ovex |  |-  ( x supp (/) ) e. _V | 
						
							| 21 | 1 13 14 15 16 | cantnfcl |  |-  ( ( ph /\ x e. S ) -> ( _E We ( x supp (/) ) /\ dom OrdIso ( _E , ( x supp (/) ) ) e. _om ) ) | 
						
							| 22 | 21 | simpld |  |-  ( ( ph /\ x e. S ) -> _E We ( x supp (/) ) ) | 
						
							| 23 | 15 | oien |  |-  ( ( ( x supp (/) ) e. _V /\ _E We ( x supp (/) ) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) | 
						
							| 24 | 20 22 23 | sylancr |  |-  ( ( ph /\ x e. S ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) | 
						
							| 26 |  | suppssdm |  |-  ( x supp (/) ) C_ dom x | 
						
							| 27 | 1 2 3 | cantnfs |  |-  ( ph -> ( x e. S <-> ( x : B --> A /\ x finSupp (/) ) ) ) | 
						
							| 28 | 27 | simprbda |  |-  ( ( ph /\ x e. S ) -> x : B --> A ) | 
						
							| 29 | 26 28 | fssdm |  |-  ( ( ph /\ x e. S ) -> ( x supp (/) ) C_ B ) | 
						
							| 30 |  | feq3 |  |-  ( A = (/) -> ( x : B --> A <-> x : B --> (/) ) ) | 
						
							| 31 | 28 30 | syl5ibcom |  |-  ( ( ph /\ x e. S ) -> ( A = (/) -> x : B --> (/) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> x : B --> (/) ) | 
						
							| 33 |  | f00 |  |-  ( x : B --> (/) <-> ( x = (/) /\ B = (/) ) ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x = (/) /\ B = (/) ) ) | 
						
							| 35 | 34 | simprd |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> B = (/) ) | 
						
							| 36 |  | sseq0 |  |-  ( ( ( x supp (/) ) C_ B /\ B = (/) ) -> ( x supp (/) ) = (/) ) | 
						
							| 37 | 29 35 36 | syl2an2r |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x supp (/) ) = (/) ) | 
						
							| 38 | 25 37 | breqtrd |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) ) | 
						
							| 39 |  | en0 |  |-  ( dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) <-> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) | 
						
							| 40 | 38 39 | sylib |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) ) | 
						
							| 42 |  | 0ex |  |-  (/) e. _V | 
						
							| 43 | 17 | seqom0g |  |-  ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) | 
						
							| 44 | 42 43 | mp1i |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) | 
						
							| 45 | 19 41 44 | 3eqtrd |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = (/) ) | 
						
							| 46 |  | el1o |  |-  ( ( ( A CNF B ) ` x ) e. 1o <-> ( ( A CNF B ) ` x ) = (/) ) | 
						
							| 47 | 45 46 | sylibr |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. 1o ) | 
						
							| 48 | 35 | oveq2d |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = ( A ^o (/) ) ) | 
						
							| 49 | 13 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> A e. On ) | 
						
							| 50 |  | oe0 |  |-  ( A e. On -> ( A ^o (/) ) = 1o ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o (/) ) = 1o ) | 
						
							| 52 | 48 51 | eqtrd |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = 1o ) | 
						
							| 53 | 47 52 | eleqtrrd |  |-  ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) | 
						
							| 54 | 13 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> A e. On ) | 
						
							| 55 | 14 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> B e. On ) | 
						
							| 56 | 16 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> x e. S ) | 
						
							| 57 |  | on0eln0 |  |-  ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) | 
						
							| 58 | 13 57 | syl |  |-  ( ( ph /\ x e. S ) -> ( (/) e. A <-> A =/= (/) ) ) | 
						
							| 59 | 58 | biimpar |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> (/) e. A ) | 
						
							| 60 | 29 | adantr |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( x supp (/) ) C_ B ) | 
						
							| 61 | 1 54 55 56 59 55 60 | cantnflt2 |  |-  ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) | 
						
							| 62 | 53 61 | pm2.61dane |  |-  ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) | 
						
							| 63 | 6 12 62 | fmpt2d |  |-  ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |