Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
fvex |
|- ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
5 |
4
|
csbex |
|- [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V |
6 |
5
|
a1i |
|- ( ( ph /\ f e. S ) -> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) e. _V ) |
7 |
|
eqid |
|- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
8 |
7 2 3
|
cantnffval |
|- ( ph -> ( A CNF B ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
9 |
7 2 3
|
cantnfdm |
|- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
10 |
1 9
|
eqtrid |
|- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
11 |
10
|
mpteq1d |
|- ( ph -> ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) = ( f e. { g e. ( A ^m B ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
12 |
8 11
|
eqtr4d |
|- ( ph -> ( A CNF B ) = ( f e. S |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |
13 |
2
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. On ) |
14 |
3
|
adantr |
|- ( ( ph /\ x e. S ) -> B e. On ) |
15 |
|
eqid |
|- OrdIso ( _E , ( x supp (/) ) ) = OrdIso ( _E , ( x supp (/) ) ) |
16 |
|
simpr |
|- ( ( ph /\ x e. S ) -> x e. S ) |
17 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
18 |
1 13 14 15 16 17
|
cantnfval |
|- ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) |
19 |
18
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) ) |
20 |
|
ovex |
|- ( x supp (/) ) e. _V |
21 |
1 13 14 15 16
|
cantnfcl |
|- ( ( ph /\ x e. S ) -> ( _E We ( x supp (/) ) /\ dom OrdIso ( _E , ( x supp (/) ) ) e. _om ) ) |
22 |
21
|
simpld |
|- ( ( ph /\ x e. S ) -> _E We ( x supp (/) ) ) |
23 |
15
|
oien |
|- ( ( ( x supp (/) ) e. _V /\ _E We ( x supp (/) ) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
24 |
20 22 23
|
sylancr |
|- ( ( ph /\ x e. S ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
25 |
24
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ ( x supp (/) ) ) |
26 |
|
suppssdm |
|- ( x supp (/) ) C_ dom x |
27 |
1 2 3
|
cantnfs |
|- ( ph -> ( x e. S <-> ( x : B --> A /\ x finSupp (/) ) ) ) |
28 |
27
|
simprbda |
|- ( ( ph /\ x e. S ) -> x : B --> A ) |
29 |
26 28
|
fssdm |
|- ( ( ph /\ x e. S ) -> ( x supp (/) ) C_ B ) |
30 |
|
feq3 |
|- ( A = (/) -> ( x : B --> A <-> x : B --> (/) ) ) |
31 |
28 30
|
syl5ibcom |
|- ( ( ph /\ x e. S ) -> ( A = (/) -> x : B --> (/) ) ) |
32 |
31
|
imp |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> x : B --> (/) ) |
33 |
|
f00 |
|- ( x : B --> (/) <-> ( x = (/) /\ B = (/) ) ) |
34 |
32 33
|
sylib |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x = (/) /\ B = (/) ) ) |
35 |
34
|
simprd |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> B = (/) ) |
36 |
|
sseq0 |
|- ( ( ( x supp (/) ) C_ B /\ B = (/) ) -> ( x supp (/) ) = (/) ) |
37 |
29 35 36
|
syl2an2r |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( x supp (/) ) = (/) ) |
38 |
25 37
|
breqtrd |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) ) |
39 |
|
en0 |
|- ( dom OrdIso ( _E , ( x supp (/) ) ) ~~ (/) <-> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) |
40 |
38 39
|
sylib |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> dom OrdIso ( _E , ( x supp (/) ) ) = (/) ) |
41 |
40
|
fveq2d |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( x supp (/) ) ) ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) ) |
42 |
|
0ex |
|- (/) e. _V |
43 |
17
|
seqom0g |
|- ( (/) e. _V -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
44 |
42 43
|
mp1i |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) .o ( x ` ( OrdIso ( _E , ( x supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` (/) ) = (/) ) |
45 |
19 41 44
|
3eqtrd |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) = (/) ) |
46 |
|
el1o |
|- ( ( ( A CNF B ) ` x ) e. 1o <-> ( ( A CNF B ) ` x ) = (/) ) |
47 |
45 46
|
sylibr |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. 1o ) |
48 |
35
|
oveq2d |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = ( A ^o (/) ) ) |
49 |
13
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> A e. On ) |
50 |
|
oe0 |
|- ( A e. On -> ( A ^o (/) ) = 1o ) |
51 |
49 50
|
syl |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o (/) ) = 1o ) |
52 |
48 51
|
eqtrd |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( A ^o B ) = 1o ) |
53 |
47 52
|
eleqtrrd |
|- ( ( ( ph /\ x e. S ) /\ A = (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
54 |
13
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> A e. On ) |
55 |
14
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> B e. On ) |
56 |
16
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> x e. S ) |
57 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
58 |
13 57
|
syl |
|- ( ( ph /\ x e. S ) -> ( (/) e. A <-> A =/= (/) ) ) |
59 |
58
|
biimpar |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> (/) e. A ) |
60 |
29
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( x supp (/) ) C_ B ) |
61 |
1 54 55 56 59 55 60
|
cantnflt2 |
|- ( ( ( ph /\ x e. S ) /\ A =/= (/) ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
62 |
53 61
|
pm2.61dane |
|- ( ( ph /\ x e. S ) -> ( ( A CNF B ) ` x ) e. ( A ^o B ) ) |
63 |
6 12 62
|
fmpt2d |
|- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |