| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 | 1 2 3 4 | cantnf |  |-  ( ph -> ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) ) | 
						
							| 6 |  | isof1o |  |-  ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> ( A CNF B ) : S -1-1-onto-> ( A ^o B ) ) | 
						
							| 7 |  | f1orel |  |-  ( ( A CNF B ) : S -1-1-onto-> ( A ^o B ) -> Rel ( A CNF B ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ph -> Rel ( A CNF B ) ) | 
						
							| 9 |  | dfrel2 |  |-  ( Rel ( A CNF B ) <-> `' `' ( A CNF B ) = ( A CNF B ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ph -> `' `' ( A CNF B ) = ( A CNF B ) ) | 
						
							| 11 |  | oecl |  |-  ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) | 
						
							| 12 | 2 3 11 | syl2anc |  |-  ( ph -> ( A ^o B ) e. On ) | 
						
							| 13 |  | eloni |  |-  ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> Ord ( A ^o B ) ) | 
						
							| 15 |  | isocnv |  |-  ( ( A CNF B ) Isom T , _E ( S , ( A ^o B ) ) -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) | 
						
							| 16 | 5 15 | syl |  |-  ( ph -> `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) | 
						
							| 17 | 1 2 3 4 | oemapwe |  |-  ( ph -> ( T We S /\ dom OrdIso ( T , S ) = ( A ^o B ) ) ) | 
						
							| 18 | 17 | simpld |  |-  ( ph -> T We S ) | 
						
							| 19 |  | ovex |  |-  ( A CNF B ) e. _V | 
						
							| 20 | 19 | dmex |  |-  dom ( A CNF B ) e. _V | 
						
							| 21 | 1 20 | eqeltri |  |-  S e. _V | 
						
							| 22 |  | exse |  |-  ( S e. _V -> T Se S ) | 
						
							| 23 | 21 22 | ax-mp |  |-  T Se S | 
						
							| 24 |  | eqid |  |-  OrdIso ( T , S ) = OrdIso ( T , S ) | 
						
							| 25 | 24 | oieu |  |-  ( ( T We S /\ T Se S ) -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) | 
						
							| 26 | 18 23 25 | sylancl |  |-  ( ph -> ( ( Ord ( A ^o B ) /\ `' ( A CNF B ) Isom _E , T ( ( A ^o B ) , S ) ) <-> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) ) | 
						
							| 27 | 14 16 26 | mpbi2and |  |-  ( ph -> ( ( A ^o B ) = dom OrdIso ( T , S ) /\ `' ( A CNF B ) = OrdIso ( T , S ) ) ) | 
						
							| 28 | 27 | simprd |  |-  ( ph -> `' ( A CNF B ) = OrdIso ( T , S ) ) | 
						
							| 29 | 28 | cnveqd |  |-  ( ph -> `' `' ( A CNF B ) = `' OrdIso ( T , S ) ) | 
						
							| 30 | 10 29 | eqtr3d |  |-  ( ph -> ( A CNF B ) = `' OrdIso ( T , S ) ) |