| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | oemapval.f |  |-  ( ph -> F e. S ) | 
						
							| 6 |  | oemapval.g |  |-  ( ph -> G e. S ) | 
						
							| 7 |  | oemapvali.r |  |-  ( ph -> F T G ) | 
						
							| 8 |  | oemapvali.x |  |-  X = U. { c e. B | ( F ` c ) e. ( G ` c ) } | 
						
							| 9 | 1 2 3 4 5 6 7 8 | oemapvali |  |-  ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) | 
						
							| 10 | 9 | simp1d |  |-  ( ph -> X e. B ) | 
						
							| 11 | 9 | simp2d |  |-  ( ph -> ( F ` X ) e. ( G ` X ) ) | 
						
							| 12 | 11 | ne0d |  |-  ( ph -> ( G ` X ) =/= (/) ) | 
						
							| 13 | 1 2 3 | cantnfs |  |-  ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) | 
						
							| 14 | 6 13 | mpbid |  |-  ( ph -> ( G : B --> A /\ G finSupp (/) ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> G : B --> A ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 17 |  | 0ex |  |-  (/) e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ph -> (/) e. _V ) | 
						
							| 19 |  | elsuppfn |  |-  ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 20 | 16 3 18 19 | syl3anc |  |-  ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) | 
						
							| 21 | 10 12 20 | mpbir2and |  |-  ( ph -> X e. ( G supp (/) ) ) |