| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | oemapval.f |  |-  ( ph -> F e. S ) | 
						
							| 6 |  | oemapval.g |  |-  ( ph -> G e. S ) | 
						
							| 7 |  | oemapvali.r |  |-  ( ph -> F T G ) | 
						
							| 8 |  | oemapvali.x |  |-  X = U. { c e. B | ( F ` c ) e. ( G ` c ) } | 
						
							| 9 |  | cantnflem1.o |  |-  O = OrdIso ( _E , ( G supp (/) ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) C_ u ) | 
						
							| 11 | 9 | oicl |  |-  Ord dom O | 
						
							| 12 |  | ovexd |  |-  ( ph -> ( G supp (/) ) e. _V ) | 
						
							| 13 | 1 2 3 9 6 | cantnfcl |  |-  ( ph -> ( _E We ( G supp (/) ) /\ dom O e. _om ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> _E We ( G supp (/) ) ) | 
						
							| 15 | 9 | oiiso |  |-  ( ( ( G supp (/) ) e. _V /\ _E We ( G supp (/) ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) | 
						
							| 16 | 12 14 15 | syl2anc |  |-  ( ph -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) | 
						
							| 17 |  | isof1o |  |-  ( O Isom _E , _E ( dom O , ( G supp (/) ) ) -> O : dom O -1-1-onto-> ( G supp (/) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> O : dom O -1-1-onto-> ( G supp (/) ) ) | 
						
							| 19 |  | f1ocnv |  |-  ( O : dom O -1-1-onto-> ( G supp (/) ) -> `' O : ( G supp (/) ) -1-1-onto-> dom O ) | 
						
							| 20 |  | f1of |  |-  ( `' O : ( G supp (/) ) -1-1-onto-> dom O -> `' O : ( G supp (/) ) --> dom O ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ph -> `' O : ( G supp (/) ) --> dom O ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 | cantnflem1a |  |-  ( ph -> X e. ( G supp (/) ) ) | 
						
							| 23 | 21 22 | ffvelcdmd |  |-  ( ph -> ( `' O ` X ) e. dom O ) | 
						
							| 24 |  | ordelon |  |-  ( ( Ord dom O /\ ( `' O ` X ) e. dom O ) -> ( `' O ` X ) e. On ) | 
						
							| 25 | 11 23 24 | sylancr |  |-  ( ph -> ( `' O ` X ) e. On ) | 
						
							| 26 | 11 | a1i |  |-  ( ph -> Ord dom O ) | 
						
							| 27 |  | ordelon |  |-  ( ( Ord dom O /\ suc u e. dom O ) -> suc u e. On ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ph /\ suc u e. dom O ) -> suc u e. On ) | 
						
							| 29 |  | onsucb |  |-  ( u e. On <-> suc u e. On ) | 
						
							| 30 | 28 29 | sylibr |  |-  ( ( ph /\ suc u e. dom O ) -> u e. On ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. On ) | 
						
							| 32 |  | ontri1 |  |-  ( ( ( `' O ` X ) e. On /\ u e. On ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) | 
						
							| 33 | 25 31 32 | syl2an2r |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) | 
						
							| 34 | 10 33 | mpbid |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. u e. ( `' O ` X ) ) | 
						
							| 35 | 16 | adantr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) | 
						
							| 36 |  | ordtr |  |-  ( Ord dom O -> Tr dom O ) | 
						
							| 37 | 11 36 | mp1i |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> Tr dom O ) | 
						
							| 38 |  | simprl |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> suc u e. dom O ) | 
						
							| 39 |  | trsuc |  |-  ( ( Tr dom O /\ suc u e. dom O ) -> u e. dom O ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. dom O ) | 
						
							| 41 | 23 | adantr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) e. dom O ) | 
						
							| 42 |  | isorel |  |-  ( ( O Isom _E , _E ( dom O , ( G supp (/) ) ) /\ ( u e. dom O /\ ( `' O ` X ) e. dom O ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) | 
						
							| 43 | 35 40 41 42 | syl12anc |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) | 
						
							| 44 |  | fvex |  |-  ( `' O ` X ) e. _V | 
						
							| 45 | 44 | epeli |  |-  ( u _E ( `' O ` X ) <-> u e. ( `' O ` X ) ) | 
						
							| 46 |  | fvex |  |-  ( O ` ( `' O ` X ) ) e. _V | 
						
							| 47 | 46 | epeli |  |-  ( ( O ` u ) _E ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) | 
						
							| 48 | 43 45 47 | 3bitr3g |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) ) | 
						
							| 49 |  | f1ocnvfv2 |  |-  ( ( O : dom O -1-1-onto-> ( G supp (/) ) /\ X e. ( G supp (/) ) ) -> ( O ` ( `' O ` X ) ) = X ) | 
						
							| 50 | 18 22 49 | syl2anc |  |-  ( ph -> ( O ` ( `' O ` X ) ) = X ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` ( `' O ` X ) ) = X ) | 
						
							| 52 | 51 | eleq2d |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( O ` u ) e. ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. X ) ) | 
						
							| 53 | 48 52 | bitrd |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. X ) ) | 
						
							| 54 | 34 53 | mtbid |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. ( O ` u ) e. X ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 | oemapvali |  |-  ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) | 
						
							| 56 | 55 | simp1d |  |-  ( ph -> X e. B ) | 
						
							| 57 |  | onelon |  |-  ( ( B e. On /\ X e. B ) -> X e. On ) | 
						
							| 58 | 3 56 57 | syl2anc |  |-  ( ph -> X e. On ) | 
						
							| 59 |  | suppssdm |  |-  ( G supp (/) ) C_ dom G | 
						
							| 60 | 1 2 3 | cantnfs |  |-  ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) | 
						
							| 61 | 6 60 | mpbid |  |-  ( ph -> ( G : B --> A /\ G finSupp (/) ) ) | 
						
							| 62 | 61 | simpld |  |-  ( ph -> G : B --> A ) | 
						
							| 63 | 59 62 | fssdm |  |-  ( ph -> ( G supp (/) ) C_ B ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( G supp (/) ) C_ B ) | 
						
							| 65 | 9 | oif |  |-  O : dom O --> ( G supp (/) ) | 
						
							| 66 | 65 | ffvelcdmi |  |-  ( u e. dom O -> ( O ` u ) e. ( G supp (/) ) ) | 
						
							| 67 | 40 66 | syl |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. ( G supp (/) ) ) | 
						
							| 68 | 64 67 | sseldd |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. B ) | 
						
							| 69 |  | onelon |  |-  ( ( B e. On /\ ( O ` u ) e. B ) -> ( O ` u ) e. On ) | 
						
							| 70 | 3 68 69 | syl2an2r |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. On ) | 
						
							| 71 |  | ontri1 |  |-  ( ( X e. On /\ ( O ` u ) e. On ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) | 
						
							| 72 | 58 70 71 | syl2an2r |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) | 
						
							| 73 | 54 72 | mpbird |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |