Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
5 |
|
oemapval.f |
|- ( ph -> F e. S ) |
6 |
|
oemapval.g |
|- ( ph -> G e. S ) |
7 |
|
oemapvali.r |
|- ( ph -> F T G ) |
8 |
|
oemapvali.x |
|- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
9 |
|
cantnflem1.o |
|- O = OrdIso ( _E , ( G supp (/) ) ) |
10 |
|
simprr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) C_ u ) |
11 |
9
|
oicl |
|- Ord dom O |
12 |
|
ovexd |
|- ( ph -> ( G supp (/) ) e. _V ) |
13 |
1 2 3 9 6
|
cantnfcl |
|- ( ph -> ( _E We ( G supp (/) ) /\ dom O e. _om ) ) |
14 |
13
|
simpld |
|- ( ph -> _E We ( G supp (/) ) ) |
15 |
9
|
oiiso |
|- ( ( ( G supp (/) ) e. _V /\ _E We ( G supp (/) ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
16 |
12 14 15
|
syl2anc |
|- ( ph -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
17 |
|
isof1o |
|- ( O Isom _E , _E ( dom O , ( G supp (/) ) ) -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
18 |
16 17
|
syl |
|- ( ph -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
19 |
|
f1ocnv |
|- ( O : dom O -1-1-onto-> ( G supp (/) ) -> `' O : ( G supp (/) ) -1-1-onto-> dom O ) |
20 |
|
f1of |
|- ( `' O : ( G supp (/) ) -1-1-onto-> dom O -> `' O : ( G supp (/) ) --> dom O ) |
21 |
18 19 20
|
3syl |
|- ( ph -> `' O : ( G supp (/) ) --> dom O ) |
22 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
|- ( ph -> X e. ( G supp (/) ) ) |
23 |
21 22
|
ffvelrnd |
|- ( ph -> ( `' O ` X ) e. dom O ) |
24 |
|
ordelon |
|- ( ( Ord dom O /\ ( `' O ` X ) e. dom O ) -> ( `' O ` X ) e. On ) |
25 |
11 23 24
|
sylancr |
|- ( ph -> ( `' O ` X ) e. On ) |
26 |
11
|
a1i |
|- ( ph -> Ord dom O ) |
27 |
|
ordelon |
|- ( ( Ord dom O /\ suc u e. dom O ) -> suc u e. On ) |
28 |
26 27
|
sylan |
|- ( ( ph /\ suc u e. dom O ) -> suc u e. On ) |
29 |
|
sucelon |
|- ( u e. On <-> suc u e. On ) |
30 |
28 29
|
sylibr |
|- ( ( ph /\ suc u e. dom O ) -> u e. On ) |
31 |
30
|
adantrr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. On ) |
32 |
|
ontri1 |
|- ( ( ( `' O ` X ) e. On /\ u e. On ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
33 |
25 31 32
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
34 |
10 33
|
mpbid |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. u e. ( `' O ` X ) ) |
35 |
16
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
36 |
|
ordtr |
|- ( Ord dom O -> Tr dom O ) |
37 |
11 36
|
mp1i |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> Tr dom O ) |
38 |
|
simprl |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> suc u e. dom O ) |
39 |
|
trsuc |
|- ( ( Tr dom O /\ suc u e. dom O ) -> u e. dom O ) |
40 |
37 38 39
|
syl2anc |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. dom O ) |
41 |
23
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) e. dom O ) |
42 |
|
isorel |
|- ( ( O Isom _E , _E ( dom O , ( G supp (/) ) ) /\ ( u e. dom O /\ ( `' O ` X ) e. dom O ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
43 |
35 40 41 42
|
syl12anc |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
44 |
|
fvex |
|- ( `' O ` X ) e. _V |
45 |
44
|
epeli |
|- ( u _E ( `' O ` X ) <-> u e. ( `' O ` X ) ) |
46 |
|
fvex |
|- ( O ` ( `' O ` X ) ) e. _V |
47 |
46
|
epeli |
|- ( ( O ` u ) _E ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) |
48 |
43 45 47
|
3bitr3g |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) ) |
49 |
|
f1ocnvfv2 |
|- ( ( O : dom O -1-1-onto-> ( G supp (/) ) /\ X e. ( G supp (/) ) ) -> ( O ` ( `' O ` X ) ) = X ) |
50 |
18 22 49
|
syl2anc |
|- ( ph -> ( O ` ( `' O ` X ) ) = X ) |
51 |
50
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` ( `' O ` X ) ) = X ) |
52 |
51
|
eleq2d |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( O ` u ) e. ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. X ) ) |
53 |
48 52
|
bitrd |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. X ) ) |
54 |
34 53
|
mtbid |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. ( O ` u ) e. X ) |
55 |
1 2 3 4 5 6 7 8
|
oemapvali |
|- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
56 |
55
|
simp1d |
|- ( ph -> X e. B ) |
57 |
|
onelon |
|- ( ( B e. On /\ X e. B ) -> X e. On ) |
58 |
3 56 57
|
syl2anc |
|- ( ph -> X e. On ) |
59 |
|
suppssdm |
|- ( G supp (/) ) C_ dom G |
60 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
61 |
6 60
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
62 |
61
|
simpld |
|- ( ph -> G : B --> A ) |
63 |
59 62
|
fssdm |
|- ( ph -> ( G supp (/) ) C_ B ) |
64 |
63
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( G supp (/) ) C_ B ) |
65 |
9
|
oif |
|- O : dom O --> ( G supp (/) ) |
66 |
65
|
ffvelrni |
|- ( u e. dom O -> ( O ` u ) e. ( G supp (/) ) ) |
67 |
40 66
|
syl |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. ( G supp (/) ) ) |
68 |
64 67
|
sseldd |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. B ) |
69 |
|
onelon |
|- ( ( B e. On /\ ( O ` u ) e. B ) -> ( O ` u ) e. On ) |
70 |
3 68 69
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. On ) |
71 |
|
ontri1 |
|- ( ( X e. On /\ ( O ` u ) e. On ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
72 |
58 70 71
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
73 |
54 72
|
mpbird |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |