| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | oemapval.f |  |-  ( ph -> F e. S ) | 
						
							| 6 |  | oemapval.g |  |-  ( ph -> G e. S ) | 
						
							| 7 |  | oemapvali.r |  |-  ( ph -> F T G ) | 
						
							| 8 |  | oemapvali.x |  |-  X = U. { c e. B | ( F ` c ) e. ( G ` c ) } | 
						
							| 9 |  | cantnflem1.o |  |-  O = OrdIso ( _E , ( G supp (/) ) ) | 
						
							| 10 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> B e. On ) | 
						
							| 11 |  | simplr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. B ) | 
						
							| 12 | 1 2 3 | cantnfs |  |-  ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) | 
						
							| 13 | 6 12 | mpbid |  |-  ( ph -> ( G : B --> A /\ G finSupp (/) ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ph -> G : B --> A ) | 
						
							| 15 | 14 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 16 | 15 | ad3antrrr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> G Fn B ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b |  |-  ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X C_ ( O ` u ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( O ` u ) e. x ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 | oemapvali |  |-  ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) | 
						
							| 21 | 20 | simp1d |  |-  ( ph -> X e. B ) | 
						
							| 22 |  | onelon |  |-  ( ( B e. On /\ X e. B ) -> X e. On ) | 
						
							| 23 | 3 21 22 | syl2anc |  |-  ( ph -> X e. On ) | 
						
							| 24 | 23 | ad3antrrr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. On ) | 
						
							| 25 |  | onss |  |-  ( B e. On -> B C_ On ) | 
						
							| 26 | 3 25 | syl |  |-  ( ph -> B C_ On ) | 
						
							| 27 | 26 | sselda |  |-  ( ( ph /\ x e. B ) -> x e. On ) | 
						
							| 28 | 27 | ad4ant13 |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. On ) | 
						
							| 29 |  | ontr2 |  |-  ( ( X e. On /\ x e. On ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) | 
						
							| 30 | 24 28 29 | syl2anc |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) | 
						
							| 31 | 18 19 30 | mp2and |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. x ) | 
						
							| 32 |  | eleq2w |  |-  ( w = x -> ( X e. w <-> X e. x ) ) | 
						
							| 33 |  | fveq2 |  |-  ( w = x -> ( F ` w ) = ( F ` x ) ) | 
						
							| 34 |  | fveq2 |  |-  ( w = x -> ( G ` w ) = ( G ` x ) ) | 
						
							| 35 | 33 34 | eqeq12d |  |-  ( w = x -> ( ( F ` w ) = ( G ` w ) <-> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 36 | 32 35 | imbi12d |  |-  ( w = x -> ( ( X e. w -> ( F ` w ) = ( G ` w ) ) <-> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) ) | 
						
							| 37 | 20 | simp3d |  |-  ( ph -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) | 
						
							| 38 | 37 | ad3antrrr |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) | 
						
							| 39 | 36 38 11 | rspcdva |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 40 | 31 39 | mpd |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) = ( G ` x ) ) | 
						
							| 41 |  | simprl |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) =/= (/) ) | 
						
							| 42 | 40 41 | eqnetrrd |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( G ` x ) =/= (/) ) | 
						
							| 43 |  | fvn0elsupp |  |-  ( ( ( B e. On /\ x e. B ) /\ ( G Fn B /\ ( G ` x ) =/= (/) ) ) -> x e. ( G supp (/) ) ) | 
						
							| 44 | 10 11 16 42 43 | syl22anc |  |-  ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. ( G supp (/) ) ) |