Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
5 |
|
oemapval.f |
|- ( ph -> F e. S ) |
6 |
|
oemapval.g |
|- ( ph -> G e. S ) |
7 |
|
oemapvali.r |
|- ( ph -> F T G ) |
8 |
|
oemapvali.x |
|- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
9 |
|
cantnflem1.o |
|- O = OrdIso ( _E , ( G supp (/) ) ) |
10 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> B e. On ) |
11 |
|
simplr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. B ) |
12 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
13 |
6 12
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
14 |
13
|
simpld |
|- ( ph -> G : B --> A ) |
15 |
14
|
ffnd |
|- ( ph -> G Fn B ) |
16 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> G Fn B ) |
17 |
1 2 3 4 5 6 7 8 9
|
cantnflem1b |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |
18 |
17
|
ad2antrr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X C_ ( O ` u ) ) |
19 |
|
simprr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( O ` u ) e. x ) |
20 |
1 2 3 4 5 6 7 8
|
oemapvali |
|- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
21 |
20
|
simp1d |
|- ( ph -> X e. B ) |
22 |
|
onelon |
|- ( ( B e. On /\ X e. B ) -> X e. On ) |
23 |
3 21 22
|
syl2anc |
|- ( ph -> X e. On ) |
24 |
23
|
ad3antrrr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. On ) |
25 |
|
onss |
|- ( B e. On -> B C_ On ) |
26 |
3 25
|
syl |
|- ( ph -> B C_ On ) |
27 |
26
|
sselda |
|- ( ( ph /\ x e. B ) -> x e. On ) |
28 |
27
|
ad4ant13 |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. On ) |
29 |
|
ontr2 |
|- ( ( X e. On /\ x e. On ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) |
30 |
24 28 29
|
syl2anc |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( ( X C_ ( O ` u ) /\ ( O ` u ) e. x ) -> X e. x ) ) |
31 |
18 19 30
|
mp2and |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> X e. x ) |
32 |
|
eleq2w |
|- ( w = x -> ( X e. w <-> X e. x ) ) |
33 |
|
fveq2 |
|- ( w = x -> ( F ` w ) = ( F ` x ) ) |
34 |
|
fveq2 |
|- ( w = x -> ( G ` w ) = ( G ` x ) ) |
35 |
33 34
|
eqeq12d |
|- ( w = x -> ( ( F ` w ) = ( G ` w ) <-> ( F ` x ) = ( G ` x ) ) ) |
36 |
32 35
|
imbi12d |
|- ( w = x -> ( ( X e. w -> ( F ` w ) = ( G ` w ) ) <-> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) ) |
37 |
20
|
simp3d |
|- ( ph -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) |
38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) |
39 |
36 38 11
|
rspcdva |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( X e. x -> ( F ` x ) = ( G ` x ) ) ) |
40 |
31 39
|
mpd |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) = ( G ` x ) ) |
41 |
|
simprl |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( F ` x ) =/= (/) ) |
42 |
40 41
|
eqnetrrd |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> ( G ` x ) =/= (/) ) |
43 |
|
fvn0elsupp |
|- ( ( ( B e. On /\ x e. B ) /\ ( G Fn B /\ ( G ` x ) =/= (/) ) ) -> x e. ( G supp (/) ) ) |
44 |
10 11 16 42 43
|
syl22anc |
|- ( ( ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) /\ x e. B ) /\ ( ( F ` x ) =/= (/) /\ ( O ` u ) e. x ) ) -> x e. ( G supp (/) ) ) |