Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
5 |
|
cantnf.c |
|- ( ph -> C e. ( A ^o B ) ) |
6 |
|
cantnf.s |
|- ( ph -> C C_ ran ( A CNF B ) ) |
7 |
|
cantnf.e |
|- ( ph -> (/) e. C ) |
8 |
|
oecl |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
9 |
2 3 8
|
syl2anc |
|- ( ph -> ( A ^o B ) e. On ) |
10 |
|
onelon |
|- ( ( ( A ^o B ) e. On /\ C e. ( A ^o B ) ) -> C e. On ) |
11 |
9 5 10
|
syl2anc |
|- ( ph -> C e. On ) |
12 |
|
ondif1 |
|- ( C e. ( On \ 1o ) <-> ( C e. On /\ (/) e. C ) ) |
13 |
11 7 12
|
sylanbrc |
|- ( ph -> C e. ( On \ 1o ) ) |
14 |
13
|
eldifbd |
|- ( ph -> -. C e. 1o ) |
15 |
|
ssel |
|- ( ( A ^o B ) C_ 1o -> ( C e. ( A ^o B ) -> C e. 1o ) ) |
16 |
5 15
|
syl5com |
|- ( ph -> ( ( A ^o B ) C_ 1o -> C e. 1o ) ) |
17 |
14 16
|
mtod |
|- ( ph -> -. ( A ^o B ) C_ 1o ) |
18 |
|
oe0m |
|- ( B e. On -> ( (/) ^o B ) = ( 1o \ B ) ) |
19 |
3 18
|
syl |
|- ( ph -> ( (/) ^o B ) = ( 1o \ B ) ) |
20 |
|
difss |
|- ( 1o \ B ) C_ 1o |
21 |
19 20
|
eqsstrdi |
|- ( ph -> ( (/) ^o B ) C_ 1o ) |
22 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
23 |
22
|
sseq1d |
|- ( A = (/) -> ( ( A ^o B ) C_ 1o <-> ( (/) ^o B ) C_ 1o ) ) |
24 |
21 23
|
syl5ibrcom |
|- ( ph -> ( A = (/) -> ( A ^o B ) C_ 1o ) ) |
25 |
|
oe1m |
|- ( B e. On -> ( 1o ^o B ) = 1o ) |
26 |
|
eqimss |
|- ( ( 1o ^o B ) = 1o -> ( 1o ^o B ) C_ 1o ) |
27 |
3 25 26
|
3syl |
|- ( ph -> ( 1o ^o B ) C_ 1o ) |
28 |
|
oveq1 |
|- ( A = 1o -> ( A ^o B ) = ( 1o ^o B ) ) |
29 |
28
|
sseq1d |
|- ( A = 1o -> ( ( A ^o B ) C_ 1o <-> ( 1o ^o B ) C_ 1o ) ) |
30 |
27 29
|
syl5ibrcom |
|- ( ph -> ( A = 1o -> ( A ^o B ) C_ 1o ) ) |
31 |
24 30
|
jaod |
|- ( ph -> ( ( A = (/) \/ A = 1o ) -> ( A ^o B ) C_ 1o ) ) |
32 |
17 31
|
mtod |
|- ( ph -> -. ( A = (/) \/ A = 1o ) ) |
33 |
|
elpri |
|- ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) |
34 |
|
df2o3 |
|- 2o = { (/) , 1o } |
35 |
33 34
|
eleq2s |
|- ( A e. 2o -> ( A = (/) \/ A = 1o ) ) |
36 |
32 35
|
nsyl |
|- ( ph -> -. A e. 2o ) |
37 |
2 36
|
eldifd |
|- ( ph -> A e. ( On \ 2o ) ) |
38 |
37 13
|
jca |
|- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |