| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | cantnf.c |  |-  ( ph -> C e. ( A ^o B ) ) | 
						
							| 6 |  | cantnf.s |  |-  ( ph -> C C_ ran ( A CNF B ) ) | 
						
							| 7 |  | cantnf.e |  |-  ( ph -> (/) e. C ) | 
						
							| 8 |  | cantnf.x |  |-  X = U. |^| { c e. On | C e. ( A ^o c ) } | 
						
							| 9 |  | cantnf.p |  |-  P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) | 
						
							| 10 |  | cantnf.y |  |-  Y = ( 1st ` P ) | 
						
							| 11 |  | cantnf.z |  |-  Z = ( 2nd ` P ) | 
						
							| 12 |  | cantnf.g |  |-  ( ph -> G e. S ) | 
						
							| 13 |  | cantnf.v |  |-  ( ph -> ( ( A CNF B ) ` G ) = Z ) | 
						
							| 14 |  | cantnf.f |  |-  F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 | cantnflem2 |  |-  ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) | 
						
							| 16 |  | eqid |  |-  X = X | 
						
							| 17 |  | eqid |  |-  Y = Y | 
						
							| 18 |  | eqid |  |-  Z = Z | 
						
							| 19 | 16 17 18 | 3pm3.2i |  |-  ( X = X /\ Y = Y /\ Z = Z ) | 
						
							| 20 | 8 9 10 11 | oeeui |  |-  ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) <-> ( X = X /\ Y = Y /\ Z = Z ) ) ) | 
						
							| 21 | 19 20 | mpbiri |  |-  ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) | 
						
							| 22 | 15 21 | syl |  |-  ( ph -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ph -> ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) ) | 
						
							| 24 | 23 | simp1d |  |-  ( ph -> X e. On ) | 
						
							| 25 |  | oecl |  |-  ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) | 
						
							| 26 | 2 24 25 | syl2anc |  |-  ( ph -> ( A ^o X ) e. On ) | 
						
							| 27 | 23 | simp2d |  |-  ( ph -> Y e. ( A \ 1o ) ) | 
						
							| 28 | 27 | eldifad |  |-  ( ph -> Y e. A ) | 
						
							| 29 |  | onelon |  |-  ( ( A e. On /\ Y e. A ) -> Y e. On ) | 
						
							| 30 | 2 28 29 | syl2anc |  |-  ( ph -> Y e. On ) | 
						
							| 31 |  | dif1o |  |-  ( Y e. ( A \ 1o ) <-> ( Y e. A /\ Y =/= (/) ) ) | 
						
							| 32 | 31 | simprbi |  |-  ( Y e. ( A \ 1o ) -> Y =/= (/) ) | 
						
							| 33 | 27 32 | syl |  |-  ( ph -> Y =/= (/) ) | 
						
							| 34 |  | on0eln0 |  |-  ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) | 
						
							| 35 | 30 34 | syl |  |-  ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) | 
						
							| 36 | 33 35 | mpbird |  |-  ( ph -> (/) e. Y ) | 
						
							| 37 |  | omword1 |  |-  ( ( ( ( A ^o X ) e. On /\ Y e. On ) /\ (/) e. Y ) -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) | 
						
							| 38 | 26 30 36 37 | syl21anc |  |-  ( ph -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) | 
						
							| 39 |  | omcl |  |-  ( ( ( A ^o X ) e. On /\ Y e. On ) -> ( ( A ^o X ) .o Y ) e. On ) | 
						
							| 40 | 26 30 39 | syl2anc |  |-  ( ph -> ( ( A ^o X ) .o Y ) e. On ) | 
						
							| 41 | 23 | simp3d |  |-  ( ph -> Z e. ( A ^o X ) ) | 
						
							| 42 |  | onelon |  |-  ( ( ( A ^o X ) e. On /\ Z e. ( A ^o X ) ) -> Z e. On ) | 
						
							| 43 | 26 41 42 | syl2anc |  |-  ( ph -> Z e. On ) | 
						
							| 44 |  | oaword1 |  |-  ( ( ( ( A ^o X ) .o Y ) e. On /\ Z e. On ) -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 45 | 40 43 44 | syl2anc |  |-  ( ph -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 46 | 22 | simprd |  |-  ( ph -> ( ( ( A ^o X ) .o Y ) +o Z ) = C ) | 
						
							| 47 | 45 46 | sseqtrd |  |-  ( ph -> ( ( A ^o X ) .o Y ) C_ C ) | 
						
							| 48 | 38 47 | sstrd |  |-  ( ph -> ( A ^o X ) C_ C ) | 
						
							| 49 |  | oecl |  |-  ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) | 
						
							| 50 | 2 3 49 | syl2anc |  |-  ( ph -> ( A ^o B ) e. On ) | 
						
							| 51 |  | ontr2 |  |-  ( ( ( A ^o X ) e. On /\ ( A ^o B ) e. On ) -> ( ( ( A ^o X ) C_ C /\ C e. ( A ^o B ) ) -> ( A ^o X ) e. ( A ^o B ) ) ) | 
						
							| 52 | 26 50 51 | syl2anc |  |-  ( ph -> ( ( ( A ^o X ) C_ C /\ C e. ( A ^o B ) ) -> ( A ^o X ) e. ( A ^o B ) ) ) | 
						
							| 53 | 48 5 52 | mp2and |  |-  ( ph -> ( A ^o X ) e. ( A ^o B ) ) | 
						
							| 54 | 15 | simpld |  |-  ( ph -> A e. ( On \ 2o ) ) | 
						
							| 55 |  | oeord |  |-  ( ( X e. On /\ B e. On /\ A e. ( On \ 2o ) ) -> ( X e. B <-> ( A ^o X ) e. ( A ^o B ) ) ) | 
						
							| 56 | 24 3 54 55 | syl3anc |  |-  ( ph -> ( X e. B <-> ( A ^o X ) e. ( A ^o B ) ) ) | 
						
							| 57 | 53 56 | mpbird |  |-  ( ph -> X e. B ) | 
						
							| 58 | 2 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> A e. On ) | 
						
							| 59 | 3 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> B e. On ) | 
						
							| 60 |  | suppssdm |  |-  ( G supp (/) ) C_ dom G | 
						
							| 61 | 1 2 3 | cantnfs |  |-  ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) | 
						
							| 62 | 12 61 | mpbid |  |-  ( ph -> ( G : B --> A /\ G finSupp (/) ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ph -> G : B --> A ) | 
						
							| 64 | 60 63 | fssdm |  |-  ( ph -> ( G supp (/) ) C_ B ) | 
						
							| 65 | 64 | sselda |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> x e. B ) | 
						
							| 66 |  | onelon |  |-  ( ( B e. On /\ x e. B ) -> x e. On ) | 
						
							| 67 | 59 65 66 | syl2anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> x e. On ) | 
						
							| 68 |  | oecl |  |-  ( ( A e. On /\ x e. On ) -> ( A ^o x ) e. On ) | 
						
							| 69 | 58 67 68 | syl2anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) e. On ) | 
						
							| 70 | 63 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> G : B --> A ) | 
						
							| 71 | 70 65 | ffvelcdmd |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) e. A ) | 
						
							| 72 |  | onelon |  |-  ( ( A e. On /\ ( G ` x ) e. A ) -> ( G ` x ) e. On ) | 
						
							| 73 | 58 71 72 | syl2anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) e. On ) | 
						
							| 74 | 63 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 75 | 7 | elexd |  |-  ( ph -> (/) e. _V ) | 
						
							| 76 |  | elsuppfn |  |-  ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( x e. ( G supp (/) ) <-> ( x e. B /\ ( G ` x ) =/= (/) ) ) ) | 
						
							| 77 | 74 3 75 76 | syl3anc |  |-  ( ph -> ( x e. ( G supp (/) ) <-> ( x e. B /\ ( G ` x ) =/= (/) ) ) ) | 
						
							| 78 | 77 | simplbda |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) =/= (/) ) | 
						
							| 79 |  | on0eln0 |  |-  ( ( G ` x ) e. On -> ( (/) e. ( G ` x ) <-> ( G ` x ) =/= (/) ) ) | 
						
							| 80 | 73 79 | syl |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( (/) e. ( G ` x ) <-> ( G ` x ) =/= (/) ) ) | 
						
							| 81 | 78 80 | mpbird |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> (/) e. ( G ` x ) ) | 
						
							| 82 |  | omword1 |  |-  ( ( ( ( A ^o x ) e. On /\ ( G ` x ) e. On ) /\ (/) e. ( G ` x ) ) -> ( A ^o x ) C_ ( ( A ^o x ) .o ( G ` x ) ) ) | 
						
							| 83 | 69 73 81 82 | syl21anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) C_ ( ( A ^o x ) .o ( G ` x ) ) ) | 
						
							| 84 |  | eqid |  |-  OrdIso ( _E , ( G supp (/) ) ) = OrdIso ( _E , ( G supp (/) ) ) | 
						
							| 85 | 12 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> G e. S ) | 
						
							| 86 |  | eqid |  |-  seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) | 
						
							| 87 | 1 58 59 84 85 86 65 | cantnfle |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A ^o x ) .o ( G ` x ) ) C_ ( ( A CNF B ) ` G ) ) | 
						
							| 88 | 13 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A CNF B ) ` G ) = Z ) | 
						
							| 89 | 87 88 | sseqtrd |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A ^o x ) .o ( G ` x ) ) C_ Z ) | 
						
							| 90 | 83 89 | sstrd |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) C_ Z ) | 
						
							| 91 | 41 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> Z e. ( A ^o X ) ) | 
						
							| 92 | 26 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o X ) e. On ) | 
						
							| 93 |  | ontr2 |  |-  ( ( ( A ^o x ) e. On /\ ( A ^o X ) e. On ) -> ( ( ( A ^o x ) C_ Z /\ Z e. ( A ^o X ) ) -> ( A ^o x ) e. ( A ^o X ) ) ) | 
						
							| 94 | 69 92 93 | syl2anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( ( A ^o x ) C_ Z /\ Z e. ( A ^o X ) ) -> ( A ^o x ) e. ( A ^o X ) ) ) | 
						
							| 95 | 90 91 94 | mp2and |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) e. ( A ^o X ) ) | 
						
							| 96 | 24 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> X e. On ) | 
						
							| 97 | 54 | adantr |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> A e. ( On \ 2o ) ) | 
						
							| 98 |  | oeord |  |-  ( ( x e. On /\ X e. On /\ A e. ( On \ 2o ) ) -> ( x e. X <-> ( A ^o x ) e. ( A ^o X ) ) ) | 
						
							| 99 | 67 96 97 98 | syl3anc |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> ( x e. X <-> ( A ^o x ) e. ( A ^o X ) ) ) | 
						
							| 100 | 95 99 | mpbird |  |-  ( ( ph /\ x e. ( G supp (/) ) ) -> x e. X ) | 
						
							| 101 | 100 | ex |  |-  ( ph -> ( x e. ( G supp (/) ) -> x e. X ) ) | 
						
							| 102 | 101 | ssrdv |  |-  ( ph -> ( G supp (/) ) C_ X ) | 
						
							| 103 | 1 2 3 12 57 28 102 14 | cantnfp1 |  |-  ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) | 
						
							| 104 | 103 | simprd |  |-  ( ph -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) | 
						
							| 105 | 13 | oveq2d |  |-  ( ph -> ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) = ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 106 | 104 105 46 | 3eqtrd |  |-  ( ph -> ( ( A CNF B ) ` F ) = C ) | 
						
							| 107 | 1 2 3 | cantnff |  |-  ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) | 
						
							| 108 | 107 | ffnd |  |-  ( ph -> ( A CNF B ) Fn S ) | 
						
							| 109 | 103 | simpld |  |-  ( ph -> F e. S ) | 
						
							| 110 |  | fnfvelrn |  |-  ( ( ( A CNF B ) Fn S /\ F e. S ) -> ( ( A CNF B ) ` F ) e. ran ( A CNF B ) ) | 
						
							| 111 | 108 109 110 | syl2anc |  |-  ( ph -> ( ( A CNF B ) ` F ) e. ran ( A CNF B ) ) | 
						
							| 112 | 106 111 | eqeltrrd |  |-  ( ph -> C e. ran ( A CNF B ) ) |