| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | cantnf.c |  |-  ( ph -> C e. ( A ^o B ) ) | 
						
							| 6 |  | cantnf.s |  |-  ( ph -> C C_ ran ( A CNF B ) ) | 
						
							| 7 |  | cantnf.e |  |-  ( ph -> (/) e. C ) | 
						
							| 8 |  | cantnf.x |  |-  X = U. |^| { c e. On | C e. ( A ^o c ) } | 
						
							| 9 |  | cantnf.p |  |-  P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) | 
						
							| 10 |  | cantnf.y |  |-  Y = ( 1st ` P ) | 
						
							| 11 |  | cantnf.z |  |-  Z = ( 2nd ` P ) | 
						
							| 12 | 1 2 3 4 5 6 7 | cantnflem2 |  |-  ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) | 
						
							| 13 |  | eqid |  |-  X = X | 
						
							| 14 |  | eqid |  |-  Y = Y | 
						
							| 15 |  | eqid |  |-  Z = Z | 
						
							| 16 | 13 14 15 | 3pm3.2i |  |-  ( X = X /\ Y = Y /\ Z = Z ) | 
						
							| 17 | 8 9 10 11 | oeeui |  |-  ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) <-> ( X = X /\ Y = Y /\ Z = Z ) ) ) | 
						
							| 18 | 16 17 | mpbiri |  |-  ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) | 
						
							| 19 | 12 18 | syl |  |-  ( ph -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) | 
						
							| 20 | 19 | simpld |  |-  ( ph -> ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) ) | 
						
							| 21 | 20 | simp1d |  |-  ( ph -> X e. On ) | 
						
							| 22 |  | oecl |  |-  ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) | 
						
							| 23 | 2 21 22 | syl2anc |  |-  ( ph -> ( A ^o X ) e. On ) | 
						
							| 24 | 20 | simp2d |  |-  ( ph -> Y e. ( A \ 1o ) ) | 
						
							| 25 | 24 | eldifad |  |-  ( ph -> Y e. A ) | 
						
							| 26 |  | onelon |  |-  ( ( A e. On /\ Y e. A ) -> Y e. On ) | 
						
							| 27 | 2 25 26 | syl2anc |  |-  ( ph -> Y e. On ) | 
						
							| 28 |  | omcl |  |-  ( ( ( A ^o X ) e. On /\ Y e. On ) -> ( ( A ^o X ) .o Y ) e. On ) | 
						
							| 29 | 23 27 28 | syl2anc |  |-  ( ph -> ( ( A ^o X ) .o Y ) e. On ) | 
						
							| 30 | 20 | simp3d |  |-  ( ph -> Z e. ( A ^o X ) ) | 
						
							| 31 |  | onelon |  |-  ( ( ( A ^o X ) e. On /\ Z e. ( A ^o X ) ) -> Z e. On ) | 
						
							| 32 | 23 30 31 | syl2anc |  |-  ( ph -> Z e. On ) | 
						
							| 33 |  | oaword1 |  |-  ( ( ( ( A ^o X ) .o Y ) e. On /\ Z e. On ) -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 34 | 29 32 33 | syl2anc |  |-  ( ph -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 35 |  | dif1o |  |-  ( Y e. ( A \ 1o ) <-> ( Y e. A /\ Y =/= (/) ) ) | 
						
							| 36 | 35 | simprbi |  |-  ( Y e. ( A \ 1o ) -> Y =/= (/) ) | 
						
							| 37 | 24 36 | syl |  |-  ( ph -> Y =/= (/) ) | 
						
							| 38 |  | on0eln0 |  |-  ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) | 
						
							| 39 | 27 38 | syl |  |-  ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) | 
						
							| 40 | 37 39 | mpbird |  |-  ( ph -> (/) e. Y ) | 
						
							| 41 |  | omword1 |  |-  ( ( ( ( A ^o X ) e. On /\ Y e. On ) /\ (/) e. Y ) -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) | 
						
							| 42 | 23 27 40 41 | syl21anc |  |-  ( ph -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) | 
						
							| 43 | 42 30 | sseldd |  |-  ( ph -> Z e. ( ( A ^o X ) .o Y ) ) | 
						
							| 44 | 34 43 | sseldd |  |-  ( ph -> Z e. ( ( ( A ^o X ) .o Y ) +o Z ) ) | 
						
							| 45 | 19 | simprd |  |-  ( ph -> ( ( ( A ^o X ) .o Y ) +o Z ) = C ) | 
						
							| 46 | 44 45 | eleqtrd |  |-  ( ph -> Z e. C ) | 
						
							| 47 | 6 46 | sseldd |  |-  ( ph -> Z e. ran ( A CNF B ) ) | 
						
							| 48 | 1 2 3 | cantnff |  |-  ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) | 
						
							| 49 |  | ffn |  |-  ( ( A CNF B ) : S --> ( A ^o B ) -> ( A CNF B ) Fn S ) | 
						
							| 50 |  | fvelrnb |  |-  ( ( A CNF B ) Fn S -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) | 
						
							| 51 | 48 49 50 | 3syl |  |-  ( ph -> ( Z e. ran ( A CNF B ) <-> E. g e. S ( ( A CNF B ) ` g ) = Z ) ) | 
						
							| 52 | 47 51 | mpbid |  |-  ( ph -> E. g e. S ( ( A CNF B ) ` g ) = Z ) | 
						
							| 53 | 2 | adantr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> A e. On ) | 
						
							| 54 | 3 | adantr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> B e. On ) | 
						
							| 55 | 5 | adantr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ( A ^o B ) ) | 
						
							| 56 | 6 | adantr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C C_ ran ( A CNF B ) ) | 
						
							| 57 | 7 | adantr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> (/) e. C ) | 
						
							| 58 |  | simprl |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> g e. S ) | 
						
							| 59 |  | simprr |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> ( ( A CNF B ) ` g ) = Z ) | 
						
							| 60 |  | eqid |  |-  ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) = ( t e. B |-> if ( t = X , Y , ( g ` t ) ) ) | 
						
							| 61 | 1 53 54 4 55 56 57 8 9 10 11 58 59 60 | cantnflem3 |  |-  ( ( ph /\ ( g e. S /\ ( ( A CNF B ) ` g ) = Z ) ) -> C e. ran ( A CNF B ) ) | 
						
							| 62 | 52 61 | rexlimddv |  |-  ( ph -> C e. ran ( A CNF B ) ) |