| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | cantnflt2.f |  |-  ( ph -> F e. S ) | 
						
							| 5 |  | cantnflt2.a |  |-  ( ph -> (/) e. A ) | 
						
							| 6 |  | cantnflt2.c |  |-  ( ph -> C e. On ) | 
						
							| 7 |  | cantnflt2.s |  |-  ( ph -> ( F supp (/) ) C_ C ) | 
						
							| 8 |  | eqid |  |-  OrdIso ( _E , ( F supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) | 
						
							| 9 |  | eqid |  |-  seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) | 
						
							| 10 | 1 2 3 8 4 9 | cantnfval |  |-  ( ph -> ( ( A CNF B ) ` F ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( F supp (/) ) ) ) ) | 
						
							| 11 |  | ovexd |  |-  ( ph -> ( F supp (/) ) e. _V ) | 
						
							| 12 | 8 | oion |  |-  ( ( F supp (/) ) e. _V -> dom OrdIso ( _E , ( F supp (/) ) ) e. On ) | 
						
							| 13 |  | sucidg |  |-  ( dom OrdIso ( _E , ( F supp (/) ) ) e. On -> dom OrdIso ( _E , ( F supp (/) ) ) e. suc dom OrdIso ( _E , ( F supp (/) ) ) ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ph -> dom OrdIso ( _E , ( F supp (/) ) ) e. suc dom OrdIso ( _E , ( F supp (/) ) ) ) | 
						
							| 15 | 1 2 3 8 4 | cantnfcl |  |-  ( ph -> ( _E We ( F supp (/) ) /\ dom OrdIso ( _E , ( F supp (/) ) ) e. _om ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> _E We ( F supp (/) ) ) | 
						
							| 17 | 8 | oiiso |  |-  ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) ) | 
						
							| 18 | 11 16 17 | syl2anc |  |-  ( ph -> OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) ) | 
						
							| 19 |  | isof1o |  |-  ( OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) -> OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -1-1-onto-> ( F supp (/) ) ) | 
						
							| 20 |  | f1ofo |  |-  ( OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -1-1-onto-> ( F supp (/) ) -> OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -onto-> ( F supp (/) ) ) | 
						
							| 21 |  | foima |  |-  ( OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -onto-> ( F supp (/) ) -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) = ( F supp (/) ) ) | 
						
							| 22 | 18 19 20 21 | 4syl |  |-  ( ph -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) = ( F supp (/) ) ) | 
						
							| 23 | 22 7 | eqsstrd |  |-  ( ph -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) C_ C ) | 
						
							| 24 | 1 2 3 8 4 9 5 14 6 23 | cantnflt |  |-  ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( F supp (/) ) ) ) e. ( A ^o C ) ) | 
						
							| 25 | 10 24 | eqeltrd |  |-  ( ph -> ( ( A CNF B ) ` F ) e. ( A ^o C ) ) |