| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
cantnfp1.g |
|- ( ph -> G e. S ) |
| 5 |
|
cantnfp1.x |
|- ( ph -> X e. B ) |
| 6 |
|
cantnfp1.y |
|- ( ph -> Y e. A ) |
| 7 |
|
cantnfp1.s |
|- ( ph -> ( G supp (/) ) C_ X ) |
| 8 |
|
cantnfp1.f |
|- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
| 9 |
|
onelon |
|- ( ( B e. On /\ X e. B ) -> X e. On ) |
| 10 |
3 5 9
|
syl2anc |
|- ( ph -> X e. On ) |
| 11 |
|
eloni |
|- ( X e. On -> Ord X ) |
| 12 |
|
ordirr |
|- ( Ord X -> -. X e. X ) |
| 13 |
10 11 12
|
3syl |
|- ( ph -> -. X e. X ) |
| 14 |
|
fvex |
|- ( G ` X ) e. _V |
| 15 |
|
dif1o |
|- ( ( G ` X ) e. ( _V \ 1o ) <-> ( ( G ` X ) e. _V /\ ( G ` X ) =/= (/) ) ) |
| 16 |
14 15
|
mpbiran |
|- ( ( G ` X ) e. ( _V \ 1o ) <-> ( G ` X ) =/= (/) ) |
| 17 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 18 |
4 17
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 19 |
18
|
simpld |
|- ( ph -> G : B --> A ) |
| 20 |
19
|
ffnd |
|- ( ph -> G Fn B ) |
| 21 |
|
0ex |
|- (/) e. _V |
| 22 |
21
|
a1i |
|- ( ph -> (/) e. _V ) |
| 23 |
|
elsuppfn |
|- ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 24 |
20 3 22 23
|
syl3anc |
|- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 25 |
16
|
bicomi |
|- ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) |
| 26 |
25
|
a1i |
|- ( ph -> ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) ) |
| 27 |
26
|
anbi2d |
|- ( ph -> ( ( X e. B /\ ( G ` X ) =/= (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
| 28 |
24 27
|
bitrd |
|- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
| 29 |
7
|
sseld |
|- ( ph -> ( X e. ( G supp (/) ) -> X e. X ) ) |
| 30 |
28 29
|
sylbird |
|- ( ph -> ( ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) -> X e. X ) ) |
| 31 |
5 30
|
mpand |
|- ( ph -> ( ( G ` X ) e. ( _V \ 1o ) -> X e. X ) ) |
| 32 |
16 31
|
biimtrrid |
|- ( ph -> ( ( G ` X ) =/= (/) -> X e. X ) ) |
| 33 |
32
|
necon1bd |
|- ( ph -> ( -. X e. X -> ( G ` X ) = (/) ) ) |
| 34 |
13 33
|
mpd |
|- ( ph -> ( G ` X ) = (/) ) |
| 35 |
34
|
ad3antrrr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` X ) = (/) ) |
| 36 |
|
simpr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> t = X ) |
| 37 |
36
|
fveq2d |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` t ) = ( G ` X ) ) |
| 38 |
|
simpllr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = (/) ) |
| 39 |
35 37 38
|
3eqtr4rd |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = ( G ` t ) ) |
| 40 |
|
eqidd |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ -. t = X ) -> ( G ` t ) = ( G ` t ) ) |
| 41 |
39 40
|
ifeqda |
|- ( ( ( ph /\ Y = (/) ) /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) = ( G ` t ) ) |
| 42 |
41
|
mpteq2dva |
|- ( ( ph /\ Y = (/) ) -> ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) = ( t e. B |-> ( G ` t ) ) ) |
| 43 |
8 42
|
eqtrid |
|- ( ( ph /\ Y = (/) ) -> F = ( t e. B |-> ( G ` t ) ) ) |
| 44 |
19
|
feqmptd |
|- ( ph -> G = ( t e. B |-> ( G ` t ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ Y = (/) ) -> G = ( t e. B |-> ( G ` t ) ) ) |
| 46 |
43 45
|
eqtr4d |
|- ( ( ph /\ Y = (/) ) -> F = G ) |
| 47 |
4
|
adantr |
|- ( ( ph /\ Y = (/) ) -> G e. S ) |
| 48 |
46 47
|
eqeltrd |
|- ( ( ph /\ Y = (/) ) -> F e. S ) |
| 49 |
|
oecl |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
| 50 |
2 3 49
|
syl2anc |
|- ( ph -> ( A ^o B ) e. On ) |
| 51 |
1 2 3
|
cantnff |
|- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 52 |
51 4
|
ffvelcdmd |
|- ( ph -> ( ( A CNF B ) ` G ) e. ( A ^o B ) ) |
| 53 |
|
onelon |
|- ( ( ( A ^o B ) e. On /\ ( ( A CNF B ) ` G ) e. ( A ^o B ) ) -> ( ( A CNF B ) ` G ) e. On ) |
| 54 |
50 52 53
|
syl2anc |
|- ( ph -> ( ( A CNF B ) ` G ) e. On ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` G ) e. On ) |
| 56 |
|
oa0r |
|- ( ( ( A CNF B ) ` G ) e. On -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
| 57 |
55 56
|
syl |
|- ( ( ph /\ Y = (/) ) -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
| 58 |
|
oveq2 |
|- ( Y = (/) -> ( ( A ^o X ) .o Y ) = ( ( A ^o X ) .o (/) ) ) |
| 59 |
|
oecl |
|- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
| 60 |
2 10 59
|
syl2anc |
|- ( ph -> ( A ^o X ) e. On ) |
| 61 |
|
om0 |
|- ( ( A ^o X ) e. On -> ( ( A ^o X ) .o (/) ) = (/) ) |
| 62 |
60 61
|
syl |
|- ( ph -> ( ( A ^o X ) .o (/) ) = (/) ) |
| 63 |
58 62
|
sylan9eqr |
|- ( ( ph /\ Y = (/) ) -> ( ( A ^o X ) .o Y ) = (/) ) |
| 64 |
63
|
oveq1d |
|- ( ( ph /\ Y = (/) ) -> ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) = ( (/) +o ( ( A CNF B ) ` G ) ) ) |
| 65 |
46
|
fveq2d |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( A CNF B ) ` G ) ) |
| 66 |
57 64 65
|
3eqtr4rd |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
| 67 |
48 66
|
jca |
|- ( ( ph /\ Y = (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| 68 |
2
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> A e. On ) |
| 69 |
3
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> B e. On ) |
| 70 |
4
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> G e. S ) |
| 71 |
5
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> X e. B ) |
| 72 |
6
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> Y e. A ) |
| 73 |
7
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> ( G supp (/) ) C_ X ) |
| 74 |
1 68 69 70 71 72 73 8
|
cantnfp1lem1 |
|- ( ( ph /\ Y =/= (/) ) -> F e. S ) |
| 75 |
|
onelon |
|- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
| 76 |
2 6 75
|
syl2anc |
|- ( ph -> Y e. On ) |
| 77 |
|
on0eln0 |
|- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
| 79 |
78
|
biimpar |
|- ( ( ph /\ Y =/= (/) ) -> (/) e. Y ) |
| 80 |
|
eqid |
|- OrdIso ( _E , ( F supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) |
| 81 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
| 82 |
|
eqid |
|- OrdIso ( _E , ( G supp (/) ) ) = OrdIso ( _E , ( G supp (/) ) ) |
| 83 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
| 84 |
1 68 69 70 71 72 73 8 79 80 81 82 83
|
cantnfp1lem3 |
|- ( ( ph /\ Y =/= (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
| 85 |
74 84
|
jca |
|- ( ( ph /\ Y =/= (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| 86 |
67 85
|
pm2.61dane |
|- ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |