Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
4 |
|
cantnfp1.g |
|- ( ph -> G e. S ) |
5 |
|
cantnfp1.x |
|- ( ph -> X e. B ) |
6 |
|
cantnfp1.y |
|- ( ph -> Y e. A ) |
7 |
|
cantnfp1.s |
|- ( ph -> ( G supp (/) ) C_ X ) |
8 |
|
cantnfp1.f |
|- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
9 |
|
onelon |
|- ( ( B e. On /\ X e. B ) -> X e. On ) |
10 |
3 5 9
|
syl2anc |
|- ( ph -> X e. On ) |
11 |
|
eloni |
|- ( X e. On -> Ord X ) |
12 |
|
ordirr |
|- ( Ord X -> -. X e. X ) |
13 |
10 11 12
|
3syl |
|- ( ph -> -. X e. X ) |
14 |
|
fvex |
|- ( G ` X ) e. _V |
15 |
|
dif1o |
|- ( ( G ` X ) e. ( _V \ 1o ) <-> ( ( G ` X ) e. _V /\ ( G ` X ) =/= (/) ) ) |
16 |
14 15
|
mpbiran |
|- ( ( G ` X ) e. ( _V \ 1o ) <-> ( G ` X ) =/= (/) ) |
17 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
18 |
4 17
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
19 |
18
|
simpld |
|- ( ph -> G : B --> A ) |
20 |
19
|
ffnd |
|- ( ph -> G Fn B ) |
21 |
|
0ex |
|- (/) e. _V |
22 |
21
|
a1i |
|- ( ph -> (/) e. _V ) |
23 |
|
elsuppfn |
|- ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
24 |
20 3 22 23
|
syl3anc |
|- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
25 |
16
|
bicomi |
|- ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) |
26 |
25
|
a1i |
|- ( ph -> ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) ) |
27 |
26
|
anbi2d |
|- ( ph -> ( ( X e. B /\ ( G ` X ) =/= (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
28 |
24 27
|
bitrd |
|- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
29 |
7
|
sseld |
|- ( ph -> ( X e. ( G supp (/) ) -> X e. X ) ) |
30 |
28 29
|
sylbird |
|- ( ph -> ( ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) -> X e. X ) ) |
31 |
5 30
|
mpand |
|- ( ph -> ( ( G ` X ) e. ( _V \ 1o ) -> X e. X ) ) |
32 |
16 31
|
syl5bir |
|- ( ph -> ( ( G ` X ) =/= (/) -> X e. X ) ) |
33 |
32
|
necon1bd |
|- ( ph -> ( -. X e. X -> ( G ` X ) = (/) ) ) |
34 |
13 33
|
mpd |
|- ( ph -> ( G ` X ) = (/) ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` X ) = (/) ) |
36 |
|
simpr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> t = X ) |
37 |
36
|
fveq2d |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` t ) = ( G ` X ) ) |
38 |
|
simpllr |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = (/) ) |
39 |
35 37 38
|
3eqtr4rd |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = ( G ` t ) ) |
40 |
|
eqidd |
|- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ -. t = X ) -> ( G ` t ) = ( G ` t ) ) |
41 |
39 40
|
ifeqda |
|- ( ( ( ph /\ Y = (/) ) /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) = ( G ` t ) ) |
42 |
41
|
mpteq2dva |
|- ( ( ph /\ Y = (/) ) -> ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) = ( t e. B |-> ( G ` t ) ) ) |
43 |
8 42
|
eqtrid |
|- ( ( ph /\ Y = (/) ) -> F = ( t e. B |-> ( G ` t ) ) ) |
44 |
19
|
feqmptd |
|- ( ph -> G = ( t e. B |-> ( G ` t ) ) ) |
45 |
44
|
adantr |
|- ( ( ph /\ Y = (/) ) -> G = ( t e. B |-> ( G ` t ) ) ) |
46 |
43 45
|
eqtr4d |
|- ( ( ph /\ Y = (/) ) -> F = G ) |
47 |
4
|
adantr |
|- ( ( ph /\ Y = (/) ) -> G e. S ) |
48 |
46 47
|
eqeltrd |
|- ( ( ph /\ Y = (/) ) -> F e. S ) |
49 |
|
oecl |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
50 |
2 3 49
|
syl2anc |
|- ( ph -> ( A ^o B ) e. On ) |
51 |
1 2 3
|
cantnff |
|- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
52 |
51 4
|
ffvelrnd |
|- ( ph -> ( ( A CNF B ) ` G ) e. ( A ^o B ) ) |
53 |
|
onelon |
|- ( ( ( A ^o B ) e. On /\ ( ( A CNF B ) ` G ) e. ( A ^o B ) ) -> ( ( A CNF B ) ` G ) e. On ) |
54 |
50 52 53
|
syl2anc |
|- ( ph -> ( ( A CNF B ) ` G ) e. On ) |
55 |
54
|
adantr |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` G ) e. On ) |
56 |
|
oa0r |
|- ( ( ( A CNF B ) ` G ) e. On -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
57 |
55 56
|
syl |
|- ( ( ph /\ Y = (/) ) -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
58 |
|
oveq2 |
|- ( Y = (/) -> ( ( A ^o X ) .o Y ) = ( ( A ^o X ) .o (/) ) ) |
59 |
|
oecl |
|- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
60 |
2 10 59
|
syl2anc |
|- ( ph -> ( A ^o X ) e. On ) |
61 |
|
om0 |
|- ( ( A ^o X ) e. On -> ( ( A ^o X ) .o (/) ) = (/) ) |
62 |
60 61
|
syl |
|- ( ph -> ( ( A ^o X ) .o (/) ) = (/) ) |
63 |
58 62
|
sylan9eqr |
|- ( ( ph /\ Y = (/) ) -> ( ( A ^o X ) .o Y ) = (/) ) |
64 |
63
|
oveq1d |
|- ( ( ph /\ Y = (/) ) -> ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) = ( (/) +o ( ( A CNF B ) ` G ) ) ) |
65 |
46
|
fveq2d |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( A CNF B ) ` G ) ) |
66 |
57 64 65
|
3eqtr4rd |
|- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
67 |
48 66
|
jca |
|- ( ( ph /\ Y = (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
68 |
2
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> A e. On ) |
69 |
3
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> B e. On ) |
70 |
4
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> G e. S ) |
71 |
5
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> X e. B ) |
72 |
6
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> Y e. A ) |
73 |
7
|
adantr |
|- ( ( ph /\ Y =/= (/) ) -> ( G supp (/) ) C_ X ) |
74 |
1 68 69 70 71 72 73 8
|
cantnfp1lem1 |
|- ( ( ph /\ Y =/= (/) ) -> F e. S ) |
75 |
|
onelon |
|- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
76 |
2 6 75
|
syl2anc |
|- ( ph -> Y e. On ) |
77 |
|
on0eln0 |
|- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
78 |
76 77
|
syl |
|- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
79 |
78
|
biimpar |
|- ( ( ph /\ Y =/= (/) ) -> (/) e. Y ) |
80 |
|
eqid |
|- OrdIso ( _E , ( F supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) |
81 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
82 |
|
eqid |
|- OrdIso ( _E , ( G supp (/) ) ) = OrdIso ( _E , ( G supp (/) ) ) |
83 |
|
eqid |
|- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
84 |
1 68 69 70 71 72 73 8 79 80 81 82 83
|
cantnfp1lem3 |
|- ( ( ph /\ Y =/= (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
85 |
74 84
|
jca |
|- ( ( ph /\ Y =/= (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
86 |
67 85
|
pm2.61dane |
|- ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |