| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
eqid |
|- { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } |
| 5 |
4 2 3
|
cantnfdm |
|- ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 6 |
1 5
|
eqtrid |
|- ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) |
| 7 |
6
|
eleq2d |
|- ( ph -> ( F e. S <-> F e. { g e. ( A ^m B ) | g finSupp (/) } ) ) |
| 8 |
|
breq1 |
|- ( g = F -> ( g finSupp (/) <-> F finSupp (/) ) ) |
| 9 |
8
|
elrab |
|- ( F e. { g e. ( A ^m B ) | g finSupp (/) } <-> ( F e. ( A ^m B ) /\ F finSupp (/) ) ) |
| 10 |
7 9
|
bitrdi |
|- ( ph -> ( F e. S <-> ( F e. ( A ^m B ) /\ F finSupp (/) ) ) ) |
| 11 |
2 3
|
elmapd |
|- ( ph -> ( F e. ( A ^m B ) <-> F : B --> A ) ) |
| 12 |
11
|
anbi1d |
|- ( ph -> ( ( F e. ( A ^m B ) /\ F finSupp (/) ) <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| 13 |
10 12
|
bitrd |
|- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |