| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfvalf.f |
|- F = seqom ( ( k e. A , z e. B |-> ( C +o D ) ) , (/) ) |
| 2 |
1
|
fnseqom |
|- F Fn _om |
| 3 |
|
nn0suc |
|- ( x e. _om -> ( x = (/) \/ E. y e. _om x = suc y ) ) |
| 4 |
|
fveq2 |
|- ( x = (/) -> ( F ` x ) = ( F ` (/) ) ) |
| 5 |
|
0ex |
|- (/) e. _V |
| 6 |
1
|
seqom0g |
|- ( (/) e. _V -> ( F ` (/) ) = (/) ) |
| 7 |
5 6
|
ax-mp |
|- ( F ` (/) ) = (/) |
| 8 |
4 7
|
eqtrdi |
|- ( x = (/) -> ( F ` x ) = (/) ) |
| 9 |
|
0elon |
|- (/) e. On |
| 10 |
8 9
|
eqeltrdi |
|- ( x = (/) -> ( F ` x ) e. On ) |
| 11 |
1
|
seqomsuc |
|- ( y e. _om -> ( F ` suc y ) = ( y ( k e. A , z e. B |-> ( C +o D ) ) ( F ` y ) ) ) |
| 12 |
|
df-ov |
|- ( y ( k e. A , z e. B |-> ( C +o D ) ) ( F ` y ) ) = ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) |
| 13 |
11 12
|
eqtrdi |
|- ( y e. _om -> ( F ` suc y ) = ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) ) |
| 14 |
|
df-ov |
|- ( C +o D ) = ( +o ` <. C , D >. ) |
| 15 |
|
fnoa |
|- +o Fn ( On X. On ) |
| 16 |
|
oacl |
|- ( ( x e. On /\ y e. On ) -> ( x +o y ) e. On ) |
| 17 |
16
|
rgen2 |
|- A. x e. On A. y e. On ( x +o y ) e. On |
| 18 |
|
ffnov |
|- ( +o : ( On X. On ) --> On <-> ( +o Fn ( On X. On ) /\ A. x e. On A. y e. On ( x +o y ) e. On ) ) |
| 19 |
15 17 18
|
mpbir2an |
|- +o : ( On X. On ) --> On |
| 20 |
19 9
|
f0cli |
|- ( +o ` <. C , D >. ) e. On |
| 21 |
14 20
|
eqeltri |
|- ( C +o D ) e. On |
| 22 |
21
|
rgen2w |
|- A. k e. A A. z e. B ( C +o D ) e. On |
| 23 |
|
eqid |
|- ( k e. A , z e. B |-> ( C +o D ) ) = ( k e. A , z e. B |-> ( C +o D ) ) |
| 24 |
23
|
fmpo |
|- ( A. k e. A A. z e. B ( C +o D ) e. On <-> ( k e. A , z e. B |-> ( C +o D ) ) : ( A X. B ) --> On ) |
| 25 |
22 24
|
mpbi |
|- ( k e. A , z e. B |-> ( C +o D ) ) : ( A X. B ) --> On |
| 26 |
25 9
|
f0cli |
|- ( ( k e. A , z e. B |-> ( C +o D ) ) ` <. y , ( F ` y ) >. ) e. On |
| 27 |
13 26
|
eqeltrdi |
|- ( y e. _om -> ( F ` suc y ) e. On ) |
| 28 |
|
fveq2 |
|- ( x = suc y -> ( F ` x ) = ( F ` suc y ) ) |
| 29 |
28
|
eleq1d |
|- ( x = suc y -> ( ( F ` x ) e. On <-> ( F ` suc y ) e. On ) ) |
| 30 |
27 29
|
syl5ibrcom |
|- ( y e. _om -> ( x = suc y -> ( F ` x ) e. On ) ) |
| 31 |
30
|
rexlimiv |
|- ( E. y e. _om x = suc y -> ( F ` x ) e. On ) |
| 32 |
10 31
|
jaoi |
|- ( ( x = (/) \/ E. y e. _om x = suc y ) -> ( F ` x ) e. On ) |
| 33 |
3 32
|
syl |
|- ( x e. _om -> ( F ` x ) e. On ) |
| 34 |
33
|
rgen |
|- A. x e. _om ( F ` x ) e. On |
| 35 |
|
ffnfv |
|- ( F : _om --> On <-> ( F Fn _om /\ A. x e. _om ( F ` x ) e. On ) ) |
| 36 |
2 34 35
|
mpbir2an |
|- F : _om --> On |